Metamath Proof Explorer


Theorem foeq123d

Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses f1eq123d.1 ( 𝜑𝐹 = 𝐺 )
f1eq123d.2 ( 𝜑𝐴 = 𝐵 )
f1eq123d.3 ( 𝜑𝐶 = 𝐷 )
Assertion foeq123d ( 𝜑 → ( 𝐹 : 𝐴onto𝐶𝐺 : 𝐵onto𝐷 ) )

Proof

Step Hyp Ref Expression
1 f1eq123d.1 ( 𝜑𝐹 = 𝐺 )
2 f1eq123d.2 ( 𝜑𝐴 = 𝐵 )
3 f1eq123d.3 ( 𝜑𝐶 = 𝐷 )
4 foeq1 ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴onto𝐶𝐺 : 𝐴onto𝐶 ) )
5 1 4 syl ( 𝜑 → ( 𝐹 : 𝐴onto𝐶𝐺 : 𝐴onto𝐶 ) )
6 foeq2 ( 𝐴 = 𝐵 → ( 𝐺 : 𝐴onto𝐶𝐺 : 𝐵onto𝐶 ) )
7 2 6 syl ( 𝜑 → ( 𝐺 : 𝐴onto𝐶𝐺 : 𝐵onto𝐶 ) )
8 foeq3 ( 𝐶 = 𝐷 → ( 𝐺 : 𝐵onto𝐶𝐺 : 𝐵onto𝐷 ) )
9 3 8 syl ( 𝜑 → ( 𝐺 : 𝐵onto𝐶𝐺 : 𝐵onto𝐷 ) )
10 5 7 9 3bitrd ( 𝜑 → ( 𝐹 : 𝐴onto𝐶𝐺 : 𝐵onto𝐷 ) )