Step |
Hyp |
Ref |
Expression |
1 |
|
fococnv2 |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝐵 ) ) |
2 |
|
cnveq |
⊢ ( 𝐹 = 𝐺 → ◡ 𝐹 = ◡ 𝐺 ) |
3 |
2
|
coeq2d |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 ∘ ◡ 𝐹 ) = ( 𝐹 ∘ ◡ 𝐺 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝐹 = 𝐺 → ( ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝐵 ) ↔ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ) |
5 |
1 4
|
syl5ibcom |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝐹 = 𝐺 → ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 = 𝐺 → ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ) |
7 |
|
fofn |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 Fn 𝐴 ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 Fn 𝐴 ) |
9 |
|
fofn |
⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → 𝐺 Fn 𝐴 ) |
10 |
9
|
ad2antlr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐺 Fn 𝐴 ) |
11 |
9
|
adantl |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐺 Fn 𝐴 ) |
12 |
|
fnopfv |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , ( 𝐺 ‘ 𝑥 ) 〉 ∈ 𝐺 ) |
13 |
11 12
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , ( 𝐺 ‘ 𝑥 ) 〉 ∈ 𝐺 ) |
14 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑥 ) ∈ V |
15 |
|
vex |
⊢ 𝑥 ∈ V |
16 |
14 15
|
brcnv |
⊢ ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ↔ 𝑥 𝐺 ( 𝐺 ‘ 𝑥 ) ) |
17 |
|
df-br |
⊢ ( 𝑥 𝐺 ( 𝐺 ‘ 𝑥 ) ↔ 〈 𝑥 , ( 𝐺 ‘ 𝑥 ) 〉 ∈ 𝐺 ) |
18 |
16 17
|
bitri |
⊢ ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ↔ 〈 𝑥 , ( 𝐺 ‘ 𝑥 ) 〉 ∈ 𝐺 ) |
19 |
13 18
|
sylibr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ) |
20 |
7
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐹 Fn 𝐴 ) |
21 |
|
fnopfv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
22 |
20 21
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
23 |
|
df-br |
⊢ ( 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ↔ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
24 |
22 23
|
sylibr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) |
25 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑦 ↔ ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ) ) |
26 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝐹 ( 𝐹 ‘ 𝑥 ) ↔ 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) |
27 |
25 26
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑦 ∧ 𝑦 𝐹 ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ∧ 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) ) |
28 |
15 27
|
spcev |
⊢ ( ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑥 ∧ 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑦 ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑦 ∧ 𝑦 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) |
29 |
19 24 28
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑦 ∧ 𝑦 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) |
30 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
31 |
14 30
|
brco |
⊢ ( ( 𝐺 ‘ 𝑥 ) ( 𝐹 ∘ ◡ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑦 ( ( 𝐺 ‘ 𝑥 ) ◡ 𝐺 𝑦 ∧ 𝑦 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) |
32 |
29 31
|
sylibr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ( 𝐹 ∘ ◡ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ) |
33 |
32
|
adantlr |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ( 𝐹 ∘ ◡ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ) |
34 |
|
breq |
⊢ ( ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) → ( ( 𝐺 ‘ 𝑥 ) ( 𝐹 ∘ ◡ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ) ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ( 𝐹 ∘ ◡ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ) ) |
36 |
33 35
|
mpbid |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ) |
37 |
|
fof |
⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
38 |
37
|
adantl |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
39 |
38
|
ffvelrnda |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) |
40 |
|
fof |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
41 |
40
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
42 |
41
|
ffvelrnda |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
43 |
|
resieq |
⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
44 |
39 42 43
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
45 |
44
|
adantlr |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ( I ↾ 𝐵 ) ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
46 |
36 45
|
mpbid |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
47 |
46
|
eqcomd |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
48 |
8 10 47
|
eqfnfvd |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 = 𝐺 ) |
49 |
48
|
ex |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) → 𝐹 = 𝐺 ) ) |
50 |
6 49
|
impbid |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 = 𝐺 ↔ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) ) |