Metamath Proof Explorer


Theorem fofi

Description: If a function has a finite domain, its range is finite. Theorem 37 of Suppes p. 104. (Contributed by NM, 25-Mar-2007)

Ref Expression
Assertion fofi ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴onto𝐵 ) → 𝐵 ∈ Fin )

Proof

Step Hyp Ref Expression
1 fodomfi ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴onto𝐵 ) → 𝐵𝐴 )
2 domfi ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → 𝐵 ∈ Fin )
3 1 2 syldan ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴onto𝐵 ) → 𝐵 ∈ Fin )