| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  𝐹 : 𝐴 –onto→ 𝐵 ) | 
						
							| 2 |  | fof | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 4 |  | domnsym | ⊢ ( 𝐵  ≼  ( 𝐴  ∖  { 𝑦 } )  →  ¬  ( 𝐴  ∖  { 𝑦 } )  ≺  𝐵 ) | 
						
							| 5 |  | simp3 | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  𝐵  ∈  Fin ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  𝐴  ≈  𝐵 ) | 
						
							| 7 |  | enfii | ⊢ ( ( 𝐵  ∈  Fin  ∧  𝐴  ≈  𝐵 )  →  𝐴  ∈  Fin ) | 
						
							| 8 | 5 6 7 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 9 | 8 | ad2antrr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝐴  ∈  Fin ) | 
						
							| 10 |  | difssd | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐴  ∖  { 𝑦 } )  ⊆  𝐴 ) | 
						
							| 11 |  | simplrr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 12 |  | neldifsn | ⊢ ¬  𝑦  ∈  ( 𝐴  ∖  { 𝑦 } ) | 
						
							| 13 |  | nelne1 | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  ( 𝐴  ∖  { 𝑦 } ) )  →  𝐴  ≠  ( 𝐴  ∖  { 𝑦 } ) ) | 
						
							| 14 | 11 12 13 | sylancl | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝐴  ≠  ( 𝐴  ∖  { 𝑦 } ) ) | 
						
							| 15 | 14 | necomd | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐴  ∖  { 𝑦 } )  ≠  𝐴 ) | 
						
							| 16 |  | df-pss | ⊢ ( ( 𝐴  ∖  { 𝑦 } )  ⊊  𝐴  ↔  ( ( 𝐴  ∖  { 𝑦 } )  ⊆  𝐴  ∧  ( 𝐴  ∖  { 𝑦 } )  ≠  𝐴 ) ) | 
						
							| 17 | 10 15 16 | sylanbrc | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐴  ∖  { 𝑦 } )  ⊊  𝐴 ) | 
						
							| 18 |  | php3 | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝐴  ∖  { 𝑦 } )  ⊊  𝐴 )  →  ( 𝐴  ∖  { 𝑦 } )  ≺  𝐴 ) | 
						
							| 19 | 9 17 18 | syl2anc | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐴  ∖  { 𝑦 } )  ≺  𝐴 ) | 
						
							| 20 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝐴  ≈  𝐵 ) | 
						
							| 21 |  | sdomentr | ⊢ ( ( ( 𝐴  ∖  { 𝑦 } )  ≺  𝐴  ∧  𝐴  ≈  𝐵 )  →  ( 𝐴  ∖  { 𝑦 } )  ≺  𝐵 ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐴  ∖  { 𝑦 } )  ≺  𝐵 ) | 
						
							| 23 | 4 22 | nsyl3 | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ¬  𝐵  ≼  ( 𝐴  ∖  { 𝑦 } ) ) | 
						
							| 24 | 8 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  𝐴  ∈  Fin ) | 
						
							| 25 |  | difss | ⊢ ( 𝐴  ∖  { 𝑦 } )  ⊆  𝐴 | 
						
							| 26 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝐴  ∖  { 𝑦 } )  ⊆  𝐴 )  →  ( 𝐴  ∖  { 𝑦 } )  ∈  Fin ) | 
						
							| 27 | 24 25 26 | sylancl | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  ( 𝐴  ∖  { 𝑦 } )  ∈  Fin ) | 
						
							| 28 | 3 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 29 |  | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( 𝐴  ∖  { 𝑦 } )  ⊆  𝐴 )  →  ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) : ( 𝐴  ∖  { 𝑦 } ) ⟶ 𝐵 ) | 
						
							| 30 | 28 25 29 | sylancl | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) : ( 𝐴  ∖  { 𝑦 } ) ⟶ 𝐵 ) | 
						
							| 31 | 1 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  𝐹 : 𝐴 –onto→ 𝐵 ) | 
						
							| 32 |  | foelrn | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑧  ∈  𝐵 )  →  ∃ 𝑢  ∈  𝐴 𝑧  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 33 | 31 32 | sylan | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  ∧  𝑧  ∈  𝐵 )  →  ∃ 𝑢  ∈  𝐴 𝑧  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 34 |  | simprll | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 35 |  | simprrr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  𝑥  ≠  𝑦 ) | 
						
							| 36 |  | eldifsn | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  { 𝑦 } )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 37 | 34 35 36 | sylanbrc | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  𝑥  ∈  ( 𝐴  ∖  { 𝑦 } ) ) | 
						
							| 38 |  | simprrl | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 39 | 38 | eqcomd | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 41 | 40 | rspceeqv | ⊢ ( ( 𝑥  ∈  ( 𝐴  ∖  { 𝑦 } )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 42 | 37 39 41 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 43 |  | fveqeq2 | ⊢ ( 𝑢  =  𝑦  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 44 | 43 | rexbidv | ⊢ ( 𝑢  =  𝑦  →  ( ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 )  ↔  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 45 | 42 44 | syl5ibrcom | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  ( 𝑢  =  𝑦  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑢  =  𝑦  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 47 | 46 | imp | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  ∧  𝑢  ∈  𝐴 )  ∧  𝑢  =  𝑦 )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 48 |  | eldifsn | ⊢ ( 𝑢  ∈  ( 𝐴  ∖  { 𝑦 } )  ↔  ( 𝑢  ∈  𝐴  ∧  𝑢  ≠  𝑦 ) ) | 
						
							| 49 |  | eqid | ⊢ ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑢 ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑤  =  𝑢  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 51 | 50 | rspceeqv | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  { 𝑦 } )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑢 ) )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 52 | 49 51 | mpan2 | ⊢ ( 𝑢  ∈  ( 𝐴  ∖  { 𝑦 } )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 53 | 48 52 | sylbir | ⊢ ( ( 𝑢  ∈  𝐴  ∧  𝑢  ≠  𝑦 )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 54 | 53 | adantll | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  ∧  𝑢  ∈  𝐴 )  ∧  𝑢  ≠  𝑦 )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 55 | 47 54 | pm2.61dane | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  ∧  𝑢  ∈  𝐴 )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 56 |  | fvres | ⊢ ( 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } )  →  ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 57 | 56 | eqeq2d | ⊢ ( 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } )  →  ( 𝑧  =  ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) ‘ 𝑤 )  ↔  𝑧  =  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 58 | 57 | rexbiia | ⊢ ( ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) 𝑧  =  ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) ‘ 𝑤 )  ↔  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) 𝑧  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 59 |  | eqeq1 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑢 )  →  ( 𝑧  =  ( 𝐹 ‘ 𝑤 )  ↔  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 60 | 59 | rexbidv | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑢 )  →  ( ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) 𝑧  =  ( 𝐹 ‘ 𝑤 )  ↔  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 61 | 58 60 | bitrid | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑢 )  →  ( ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) 𝑧  =  ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) ‘ 𝑤 )  ↔  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 62 | 55 61 | syl5ibrcom | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑧  =  ( 𝐹 ‘ 𝑢 )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) 𝑧  =  ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) ‘ 𝑤 ) ) ) | 
						
							| 63 | 62 | rexlimdva | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  ( ∃ 𝑢  ∈  𝐴 𝑧  =  ( 𝐹 ‘ 𝑢 )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) 𝑧  =  ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) ‘ 𝑤 ) ) ) | 
						
							| 64 | 63 | imp | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  ∧  ∃ 𝑢  ∈  𝐴 𝑧  =  ( 𝐹 ‘ 𝑢 ) )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) 𝑧  =  ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) ‘ 𝑤 ) ) | 
						
							| 65 | 33 64 | syldan | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  ∧  𝑧  ∈  𝐵 )  →  ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) 𝑧  =  ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) ‘ 𝑤 ) ) | 
						
							| 66 | 65 | ralrimiva | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  ∀ 𝑧  ∈  𝐵 ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) 𝑧  =  ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) ‘ 𝑤 ) ) | 
						
							| 67 |  | dffo3 | ⊢ ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) : ( 𝐴  ∖  { 𝑦 } ) –onto→ 𝐵  ↔  ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) : ( 𝐴  ∖  { 𝑦 } ) ⟶ 𝐵  ∧  ∀ 𝑧  ∈  𝐵 ∃ 𝑤  ∈  ( 𝐴  ∖  { 𝑦 } ) 𝑧  =  ( ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) ‘ 𝑤 ) ) ) | 
						
							| 68 | 30 66 67 | sylanbrc | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) : ( 𝐴  ∖  { 𝑦 } ) –onto→ 𝐵 ) | 
						
							| 69 |  | fodomfi | ⊢ ( ( ( 𝐴  ∖  { 𝑦 } )  ∈  Fin  ∧  ( 𝐹  ↾  ( 𝐴  ∖  { 𝑦 } ) ) : ( 𝐴  ∖  { 𝑦 } ) –onto→ 𝐵 )  →  𝐵  ≼  ( 𝐴  ∖  { 𝑦 } ) ) | 
						
							| 70 | 27 68 69 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) )  →  𝐵  ≼  ( 𝐴  ∖  { 𝑦 } ) ) | 
						
							| 71 | 70 | anassrs | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝐵  ≼  ( 𝐴  ∖  { 𝑦 } ) ) | 
						
							| 72 | 71 | expr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝑥  ≠  𝑦  →  𝐵  ≼  ( 𝐴  ∖  { 𝑦 } ) ) ) | 
						
							| 73 | 72 | necon1bd | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( ¬  𝐵  ≼  ( 𝐴  ∖  { 𝑦 } )  →  𝑥  =  𝑦 ) ) | 
						
							| 74 | 23 73 | mpd | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑥  =  𝑦 ) | 
						
							| 75 | 74 | ex | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 76 | 75 | ralrimivva | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 77 |  | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 78 | 3 76 77 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 79 |  | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ↔  ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐹 : 𝐴 –onto→ 𝐵 ) ) | 
						
							| 80 | 78 1 79 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |