Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | fofn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 Fn 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
2 | 1 | ffnd | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 Fn 𝐴 ) |