| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fompt.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 2 |
|
fof |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 3 |
1
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 4 |
2 3
|
sylibr |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
| 5 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 6 |
1 5
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
| 7 |
6
|
foelrnf |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
| 10 |
6 8 9
|
nffo |
⊢ Ⅎ 𝑥 𝐹 : 𝐴 –onto→ 𝐵 |
| 11 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 13 |
4
|
r19.21bi |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 14 |
1
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 15 |
12 13 14
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 17 |
11 16
|
eqtrd |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 = 𝐶 ) |
| 18 |
17
|
exp31 |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 = 𝐶 ) ) ) |
| 19 |
10 18
|
reximdai |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
| 21 |
7 20
|
mpd |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
| 22 |
21
|
ralrimiva |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
| 23 |
4 22
|
jca |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
| 24 |
3
|
biimpi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 25 |
24
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 26 |
|
nfv |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 27 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 |
| 28 |
26 27
|
nfan |
⊢ Ⅎ 𝑦 ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
| 29 |
|
simpll |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
| 30 |
|
rspa |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
| 31 |
30
|
adantll |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
| 32 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 33 |
|
simp3 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝑦 = 𝐶 ) |
| 34 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 35 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 36 |
34 35 14
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 37 |
36
|
eqcomd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |
| 38 |
37
|
3adant3 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |
| 39 |
33 38
|
eqtrd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 40 |
39
|
3exp |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐶 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 41 |
32 40
|
reximdai |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 42 |
29 31 41
|
sylc |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 43 |
28 42
|
ralrimia |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 44 |
6
|
dffo3f |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 |
25 43 44
|
sylanbrc |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 46 |
23 45
|
impbii |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |