| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fompt.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 2 |  | fof | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 3 | 1 | fmpt | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ↔  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 4 | 2 3 | sylibr | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵 ) | 
						
							| 5 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 6 | 1 5 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 7 | 6 | foelrnf | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 10 | 6 8 9 | nffo | ⊢ Ⅎ 𝑥 𝐹 : 𝐴 –onto→ 𝐵 | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 13 | 4 | r19.21bi | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝐵 ) | 
						
							| 14 | 1 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐶  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑥 )  =  𝐶 ) | 
						
							| 15 | 12 13 14 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  𝐶 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝐹 ‘ 𝑥 )  =  𝐶 ) | 
						
							| 17 | 11 16 | eqtrd | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  𝑦  =  𝐶 ) | 
						
							| 18 | 17 | exp31 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  𝑦  =  𝐶 ) ) ) | 
						
							| 19 | 10 18 | reximdai | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  ( ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 ) ) | 
						
							| 21 | 7 20 | mpd | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 ) | 
						
							| 23 | 4 22 | jca | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 ) ) | 
						
							| 24 | 3 | biimpi | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 26 |  | nfv | ⊢ Ⅎ 𝑦 ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵 | 
						
							| 27 |  | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 | 
						
							| 28 | 26 27 | nfan | ⊢ Ⅎ 𝑦 ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 ) | 
						
							| 29 |  | simpll | ⊢ ( ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 )  ∧  𝑦  ∈  𝐵 )  →  ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵 ) | 
						
							| 30 |  | rspa | ⊢ ( ( ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 ) | 
						
							| 31 | 30 | adantll | ⊢ ( ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 )  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 ) | 
						
							| 32 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵 | 
						
							| 33 |  | simp3 | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 )  →  𝑦  =  𝐶 ) | 
						
							| 34 |  | simpr | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 35 |  | rspa | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝐵 ) | 
						
							| 36 | 34 35 14 | syl2anc | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  𝐶 ) | 
						
							| 37 | 36 | eqcomd | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  →  𝐶  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 38 | 37 | 3adant3 | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 )  →  𝐶  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 39 | 33 38 | eqtrd | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 )  →  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 40 | 39 | 3exp | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  =  𝐶  →  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 41 | 32 40 | reximdai | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  →  ( ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 42 | 29 31 41 | sylc | ⊢ ( ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 )  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 43 | 28 42 | ralrimia | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 )  →  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 44 | 6 | dffo3f | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 45 | 25 43 44 | sylanbrc | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 )  →  𝐹 : 𝐴 –onto→ 𝐵 ) | 
						
							| 46 | 23 45 | impbii | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  ↔  ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 ) ) |