Metamath Proof Explorer


Theorem fonum

Description: A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion fonum ( ( 𝐴 ∈ dom card ∧ 𝐹 : 𝐴onto𝐵 ) → 𝐵 ∈ dom card )

Proof

Step Hyp Ref Expression
1 fodomnum ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴onto𝐵𝐵𝐴 ) )
2 1 imp ( ( 𝐴 ∈ dom card ∧ 𝐹 : 𝐴onto𝐵 ) → 𝐵𝐴 )
3 numdom ( ( 𝐴 ∈ dom card ∧ 𝐵𝐴 ) → 𝐵 ∈ dom card )
4 2 3 syldan ( ( 𝐴 ∈ dom card ∧ 𝐹 : 𝐴onto𝐵 ) → 𝐵 ∈ dom card )