Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
isperp.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
isperp.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
isperp.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
isperp.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
isperp.a |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
7 |
|
footeq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
8 |
|
footeq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
9 |
|
footeq.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
10 |
|
footeq.1 |
⊢ ( 𝜑 → ( 𝑋 𝐿 𝑍 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) |
11 |
|
footeq.2 |
⊢ ( 𝜑 → ( 𝑌 𝐿 𝑍 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑍 𝐿 𝑥 ) = ( 𝑍 𝐿 𝑋 ) ) |
13 |
12
|
breq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑍 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 ↔ ( 𝑍 𝐿 𝑋 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝑍 𝐿 𝑥 ) = ( 𝑍 𝐿 𝑌 ) ) |
15 |
14
|
breq1d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑍 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 ↔ ( 𝑍 𝐿 𝑌 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) ) |
16 |
1 2 3 4 5 6 7 9 10
|
footne |
⊢ ( 𝜑 → ¬ 𝑍 ∈ 𝐴 ) |
17 |
1 2 3 4 5 6 9 16
|
foot |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐴 ( 𝑍 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) |
18 |
1 4 3 5 6 7
|
tglnpt |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
19 |
4 5 10
|
perpln1 |
⊢ ( 𝜑 → ( 𝑋 𝐿 𝑍 ) ∈ ran 𝐿 ) |
20 |
1 3 4 5 18 9 19
|
tglnne |
⊢ ( 𝜑 → 𝑋 ≠ 𝑍 ) |
21 |
1 3 4 5 18 9 20
|
tglinecom |
⊢ ( 𝜑 → ( 𝑋 𝐿 𝑍 ) = ( 𝑍 𝐿 𝑋 ) ) |
22 |
21 10
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑍 𝐿 𝑋 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) |
23 |
1 4 3 5 6 8
|
tglnpt |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
24 |
4 5 11
|
perpln1 |
⊢ ( 𝜑 → ( 𝑌 𝐿 𝑍 ) ∈ ran 𝐿 ) |
25 |
1 3 4 5 23 9 24
|
tglnne |
⊢ ( 𝜑 → 𝑌 ≠ 𝑍 ) |
26 |
1 3 4 5 23 9 25
|
tglinecom |
⊢ ( 𝜑 → ( 𝑌 𝐿 𝑍 ) = ( 𝑍 𝐿 𝑌 ) ) |
27 |
26 11
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑍 𝐿 𝑌 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) |
28 |
13 15 17 7 8 22 27
|
reu2eqd |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |