Metamath Proof Explorer


Theorem footexALT

Description: Alternative version of footex which minimization requires a notably long time. (Contributed by Thierry Arnoux, 19-Oct-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses isperp.p 𝑃 = ( Base ‘ 𝐺 )
isperp.d = ( dist ‘ 𝐺 )
isperp.i 𝐼 = ( Itv ‘ 𝐺 )
isperp.l 𝐿 = ( LineG ‘ 𝐺 )
isperp.g ( 𝜑𝐺 ∈ TarskiG )
isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
foot.x ( 𝜑𝐶𝑃 )
foot.y ( 𝜑 → ¬ 𝐶𝐴 )
Assertion footexALT ( 𝜑 → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )

Proof

Step Hyp Ref Expression
1 isperp.p 𝑃 = ( Base ‘ 𝐺 )
2 isperp.d = ( dist ‘ 𝐺 )
3 isperp.i 𝐼 = ( Itv ‘ 𝐺 )
4 isperp.l 𝐿 = ( LineG ‘ 𝐺 )
5 isperp.g ( 𝜑𝐺 ∈ TarskiG )
6 isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
7 foot.x ( 𝜑𝐶𝑃 )
8 foot.y ( 𝜑 → ¬ 𝐶𝐴 )
9 eqid ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 )
10 5 ad3antrrr ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → 𝐺 ∈ TarskiG )
11 10 ad2antrr ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → 𝐺 ∈ TarskiG )
12 11 ad2antrr ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → 𝐺 ∈ TarskiG )
13 12 ad2antrr ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → 𝐺 ∈ TarskiG )
14 13 ad2antrr ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → 𝐺 ∈ TarskiG )
15 14 ad2antrr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝐺 ∈ TarskiG )
16 eqid ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 )
17 7 ad3antrrr ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → 𝐶𝑃 )
18 17 ad2antrr ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → 𝐶𝑃 )
19 18 ad6antr ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → 𝐶𝑃 )
20 19 ad2antrr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝐶𝑃 )
21 simplr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑑𝑃 )
22 simp-4r ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → 𝑦𝑃 )
23 22 ad2antrr ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → 𝑦𝑃 )
24 23 ad2antrr ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → 𝑦𝑃 )
25 24 ad2antrr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑦𝑃 )
26 simprr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) )
27 26 eqcomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝐶 ) = ( 𝑦 𝑑 ) )
28 1 2 3 4 9 15 16 20 21 25 27 midexlem ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ∃ 𝑥𝑃 𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) )
29 15 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐺 ∈ TarskiG )
30 25 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦𝑃 )
31 simp-6r ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑧𝑃 )
32 31 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑧𝑃 )
33 simprl ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑥𝑃 )
34 simp-4r ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → 𝑝𝑃 )
35 34 ad4antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑝𝑃 )
36 35 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑝𝑃 )
37 simp-5r ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) )
38 37 simprd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) )
39 38 eqcomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝑝 ) = ( 𝑦 𝑧 ) )
40 39 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑦 𝑝 ) = ( 𝑦 𝑧 ) )
41 simp-7r ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) )
42 41 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) )
43 simpllr ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → 𝑎𝑃 )
44 43 ad2antrr ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → 𝑎𝑃 )
45 44 ad2antrr ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → 𝑎𝑃 )
46 45 ad2antrr ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → 𝑎𝑃 )
47 46 ad4antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑎𝑃 )
48 simplr ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → 𝑏𝑃 )
49 48 ad10antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑏𝑃 )
50 simp-11r ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) )
51 50 simprd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑎𝑏 )
52 51 necomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑏𝑎 )
53 simp-9r ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) )
54 53 simpld ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) )
55 1 3 4 15 49 47 25 52 54 btwnlng3 ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑦 ∈ ( 𝑏 𝐿 𝑎 ) )
56 1 3 4 15 47 49 25 51 55 lncom ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑦 ∈ ( 𝑎 𝐿 𝑏 ) )
57 50 simpld ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝐴 = ( 𝑎 𝐿 𝑏 ) )
58 56 57 eleqtrrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑦𝐴 )
59 58 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦𝐴 )
60 8 ad3antrrr ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → ¬ 𝐶𝐴 )
61 60 ad10antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ¬ 𝐶𝐴 )
62 61 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ¬ 𝐶𝐴 )
63 nelne2 ( ( 𝑦𝐴 ∧ ¬ 𝐶𝐴 ) → 𝑦𝐶 )
64 59 62 63 syl2anc ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦𝐶 )
65 64 necomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐶𝑦 )
66 42 65 eqnetrrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ≠ 𝑦 )
67 eqid ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 )
68 1 2 3 4 9 29 36 67 30 mirinv ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) = 𝑦𝑝 = 𝑦 ) )
69 68 necon3bid ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ≠ 𝑦𝑝𝑦 ) )
70 66 69 mpbid ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑝𝑦 )
71 70 necomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦𝑝 )
72 1 2 3 29 30 36 30 32 40 71 tgcgrneq ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦𝑧 )
73 72 necomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑧𝑦 )
74 eqid ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 )
75 simp-4r ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑞𝑃 )
76 75 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑞𝑃 )
77 simp-4r ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → 𝑧𝑃 )
78 simplr ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → 𝑞𝑃 )
79 1 2 3 4 9 14 77 74 78 mircl ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) ∈ 𝑃 )
80 79 ad3antrrr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) ∈ 𝑃 )
81 20 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐶𝑃 )
82 simpllr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑑𝑃 )
83 1 2 3 4 9 29 36 67 30 mirbtwn ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑝 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) 𝐼 𝑦 ) )
84 42 oveq1d ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝐶 𝐼 𝑦 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) 𝐼 𝑦 ) )
85 83 84 eleqtrrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑝 ∈ ( 𝐶 𝐼 𝑦 ) )
86 simpllr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) )
87 86 simpld ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) )
88 87 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) )
89 1 2 3 29 81 36 30 76 70 85 88 tgbtwnouttr2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦 ∈ ( 𝐶 𝐼 𝑞 ) )
90 1 2 3 29 81 30 76 89 tgbtwncom ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦 ∈ ( 𝑞 𝐼 𝐶 ) )
91 simplrl ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) )
92 eqid ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 )
93 53 simprd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) )
94 41 oveq2d ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑎 𝐶 ) = ( 𝑎 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) )
95 93 94 eqtrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑎 𝑦 ) = ( 𝑎 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) )
96 1 2 3 4 9 15 47 35 25 israg ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( ⟨“ 𝑎 𝑝 𝑦 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑎 𝑦 ) = ( 𝑎 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ) )
97 95 96 mpbird ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ⟨“ 𝑎 𝑝 𝑦 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
98 86 simprd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) )
99 1 2 3 15 47 25 47 20 93 tgcgrcomlr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝑎 ) = ( 𝐶 𝑎 ) )
100 98 99 eqtr2d ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝐶 𝑎 ) = ( 𝑦 𝑞 ) )
101 1 3 4 15 47 49 51 tglinerflx1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑎 ∈ ( 𝑎 𝐿 𝑏 ) )
102 101 57 eleqtrrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑎𝐴 )
103 nelne2 ( ( 𝑎𝐴 ∧ ¬ 𝐶𝐴 ) → 𝑎𝐶 )
104 102 61 103 syl2anc ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑎𝐶 )
105 104 necomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝐶𝑎 )
106 1 2 3 15 20 47 25 75 100 105 tgcgrneq ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑦𝑞 )
107 106 necomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑞𝑦 )
108 1 2 3 15 35 25 75 87 tgbtwncom ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑦 ∈ ( 𝑞 𝐼 𝑝 ) )
109 37 simpld ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) )
110 1 2 3 15 25 75 25 47 98 tgcgrcomlr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑞 𝑦 ) = ( 𝑎 𝑦 ) )
111 1 2 3 15 75 47 axtgcgrrflx ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑞 𝑎 ) = ( 𝑎 𝑞 ) )
112 98 eqcomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝑎 ) = ( 𝑦 𝑞 ) )
113 1 2 3 15 75 25 35 47 25 31 47 75 107 108 109 110 39 111 112 axtg5seg ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑝 𝑎 ) = ( 𝑧 𝑞 ) )
114 1 2 3 15 35 47 31 75 113 tgcgrcomlr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑎 𝑝 ) = ( 𝑞 𝑧 ) )
115 1 2 3 15 25 35 25 31 39 tgcgrcomlr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑝 𝑦 ) = ( 𝑧 𝑦 ) )
116 1 2 92 15 47 35 25 75 31 25 114 115 112 trgcgr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ⟨“ 𝑎 𝑝 𝑦 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑞 𝑧 𝑦 ”⟩ )
117 1 2 3 4 9 15 47 35 25 92 75 31 25 97 116 ragcgr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ⟨“ 𝑞 𝑧 𝑦 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
118 1 2 3 4 9 15 75 31 25 117 ragcom ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ⟨“ 𝑦 𝑧 𝑞 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
119 1 2 3 4 9 15 25 31 75 israg ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( ⟨“ 𝑦 𝑧 𝑞 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑦 𝑞 ) = ( 𝑦 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) ) ) )
120 118 119 mpbid ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝑞 ) = ( 𝑦 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) ) )
121 120 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑦 𝑞 ) = ( 𝑦 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) ) )
122 27 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑦 𝐶 ) = ( 𝑦 𝑑 ) )
123 eqidd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) )
124 simprr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) )
125 1 2 3 4 9 29 74 16 76 80 30 81 82 32 33 90 91 121 122 123 124 krippen ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦 ∈ ( 𝑧 𝐼 𝑥 ) )
126 1 3 4 29 32 30 33 73 125 btwnlng3 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑥 ∈ ( 𝑧 𝐿 𝑦 ) )
127 1 3 4 29 30 32 33 72 126 lncom ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑥 ∈ ( 𝑦 𝐿 𝑧 ) )
128 6 ad5antr ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → 𝐴 ∈ ran 𝐿 )
129 128 ad9antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐴 ∈ ran 𝐿 )
130 47 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑎𝑃 )
131 93 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) )
132 131 eqcomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑎 𝐶 ) = ( 𝑎 𝑦 ) )
133 104 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑎𝐶 )
134 1 2 3 29 130 81 130 30 132 133 tgcgrneq ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑎𝑦 )
135 109 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) )
136 1 3 4 29 130 30 32 134 135 btwnlng3 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑧 ∈ ( 𝑎 𝐿 𝑦 ) )
137 102 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑎𝐴 )
138 1 3 4 29 130 30 134 134 129 137 59 tglinethru ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐴 = ( 𝑎 𝐿 𝑦 ) )
139 136 138 eleqtrrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑧𝐴 )
140 1 3 4 29 30 32 72 72 129 59 139 tglinethru ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐴 = ( 𝑦 𝐿 𝑧 ) )
141 127 140 eleqtrrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑥𝐴 )
142 nelne2 ( ( 𝑥𝐴 ∧ ¬ 𝐶𝐴 ) → 𝑥𝐶 )
143 141 62 142 syl2anc ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑥𝐶 )
144 143 necomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐶𝑥 )
145 1 3 4 29 81 33 144 tgelrnln ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝐶 𝐿 𝑥 ) ∈ ran 𝐿 )
146 1 3 4 29 81 33 144 tglinerflx2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑥 ∈ ( 𝐶 𝐿 𝑥 ) )
147 146 141 elind ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑥 ∈ ( ( 𝐶 𝐿 𝑥 ) ∩ 𝐴 ) )
148 1 3 4 29 81 33 144 tglinerflx1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐶 ∈ ( 𝐶 𝐿 𝑥 ) )
149 29 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝐺 ∈ TarskiG )
150 130 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑎𝑃 )
151 30 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑦𝑃 )
152 36 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑝𝑃 )
153 81 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝐶𝑃 )
154 eqidd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝐶 = 𝐶 )
155 simpr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 )
156 eqidd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑎 = 𝑎 )
157 154 155 156 s3eqd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ⟨“ 𝐶 𝑦 𝑎 ”⟩ = ⟨“ 𝐶 𝑥 𝑎 ”⟩ )
158 33 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑥𝑃 )
159 32 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑧𝑃 )
160 107 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑞𝑦 )
161 1 2 3 29 30 76 30 80 121 tgcgrcomlr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑞 𝑦 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝑦 ) )
162 1 2 3 4 9 29 32 74 76 mircgr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑧 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) ) = ( 𝑧 𝑞 ) )
163 162 eqcomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑧 𝑞 ) = ( 𝑧 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) ) )
164 1 2 3 29 32 76 32 80 163 tgcgrcomlr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑞 𝑧 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝑧 ) )
165 eqidd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑦 𝑧 ) = ( 𝑦 𝑧 ) )
166 1 2 3 29 76 30 81 80 30 82 32 32 160 90 91 161 122 164 165 axtg5seg ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝐶 𝑧 ) = ( 𝑑 𝑧 ) )
167 1 2 3 29 81 32 82 32 166 tgcgrcomlr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑧 𝐶 ) = ( 𝑧 𝑑 ) )
168 124 oveq2d ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑧 𝑑 ) = ( 𝑧 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) )
169 167 168 eqtrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑧 𝐶 ) = ( 𝑧 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) )
170 1 2 3 4 9 29 32 33 81 israg ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( ⟨“ 𝑧 𝑥 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑧 𝐶 ) = ( 𝑧 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) )
171 169 170 mpbird ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ⟨“ 𝑧 𝑥 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
172 171 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ⟨“ 𝑧 𝑥 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
173 73 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑧𝑦 )
174 173 155 neeqtrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑧𝑥 )
175 132 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ( 𝑎 𝐶 ) = ( 𝑎 𝑦 ) )
176 133 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑎𝐶 )
177 1 2 3 149 150 153 150 151 175 176 tgcgrneq ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑎𝑦 )
178 177 necomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑦𝑎 )
179 136 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑧 ∈ ( 𝑎 𝐿 𝑦 ) )
180 1 3 4 149 151 150 159 178 179 lncom ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑧 ∈ ( 𝑦 𝐿 𝑎 ) )
181 155 oveq1d ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ( 𝑦 𝐿 𝑎 ) = ( 𝑥 𝐿 𝑎 ) )
182 180 181 eleqtrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑧 ∈ ( 𝑥 𝐿 𝑎 ) )
183 182 orcd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ( 𝑧 ∈ ( 𝑥 𝐿 𝑎 ) ∨ 𝑥 = 𝑎 ) )
184 1 2 3 4 9 149 159 158 153 150 172 174 183 ragcol ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ⟨“ 𝑎 𝑥 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
185 1 2 3 4 9 149 150 158 153 184 ragcom ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ⟨“ 𝐶 𝑥 𝑎 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
186 157 185 eqeltrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ⟨“ 𝐶 𝑦 𝑎 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
187 65 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝐶𝑦 )
188 1 2 3 29 81 36 30 85 tgbtwncom ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑝 ∈ ( 𝑦 𝐼 𝐶 ) )
189 1 4 3 29 30 36 81 188 btwncolg3 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝐶 ∈ ( 𝑦 𝐿 𝑝 ) ∨ 𝑦 = 𝑝 ) )
190 189 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ( 𝐶 ∈ ( 𝑦 𝐿 𝑝 ) ∨ 𝑦 = 𝑝 ) )
191 1 2 3 4 9 149 153 151 150 152 186 187 190 ragcol ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ⟨“ 𝑝 𝑦 𝑎 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
192 1 2 3 4 9 149 152 151 150 191 ragcom ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ⟨“ 𝑎 𝑦 𝑝 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
193 97 ad2antrr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ⟨“ 𝑎 𝑝 𝑦 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
194 1 2 3 4 9 149 150 151 152 192 193 ragflat ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑝 )
195 71 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑦𝑝 )
196 195 neneqd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) ∧ 𝑦 = 𝑥 ) → ¬ 𝑦 = 𝑝 )
197 194 196 pm2.65da ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ¬ 𝑦 = 𝑥 )
198 197 neqned ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦𝑥 )
199 124 oveq2d ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑦 𝑑 ) = ( 𝑦 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) )
200 122 199 eqtrd ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑦 𝐶 ) = ( 𝑦 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) )
201 1 2 3 4 9 29 30 33 81 israg ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( ⟨“ 𝑦 𝑥 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑦 𝐶 ) = ( 𝑦 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) )
202 200 201 mpbird ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ⟨“ 𝑦 𝑥 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
203 1 2 3 4 9 29 30 33 81 202 ragcom ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ⟨“ 𝐶 𝑥 𝑦 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
204 1 2 3 4 29 145 129 147 148 59 144 198 203 ragperp ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
205 28 141 204 reximssdv ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
206 1 2 3 14 79 24 24 19 axtgsegcon ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → ∃ 𝑑𝑃 ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) )
207 205 206 r19.29a ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
208 1 2 3 13 34 23 23 46 axtgsegcon ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → ∃ 𝑞𝑃 ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) )
209 207 208 r19.29a ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
210 simplr ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → 𝑝𝑃 )
211 1 2 3 12 45 22 22 210 axtgsegcon ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → ∃ 𝑧𝑃 ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) )
212 209 211 r19.29a ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
213 simplr ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → 𝑦𝑃 )
214 simprr ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) )
215 1 2 3 4 9 11 67 213 18 44 214 midexlem ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → ∃ 𝑝𝑃 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) )
216 212 215 r19.29a ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
217 1 2 3 10 48 43 43 17 axtgsegcon ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → ∃ 𝑦𝑃 ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) )
218 216 217 r19.29a ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
219 1 3 4 5 6 tgisline ( 𝜑 → ∃ 𝑎𝑃𝑏𝑃 ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) )
220 218 219 r19.29vva ( 𝜑 → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )