Metamath Proof Explorer


Theorem footexlem1

Description: Lemma for footex . (Contributed by Thierry Arnoux, 19-Oct-2019) (Revised by Thierry Arnoux, 1-Jul-2023)

Ref Expression
Hypotheses isperp.p 𝑃 = ( Base ‘ 𝐺 )
isperp.d = ( dist ‘ 𝐺 )
isperp.i 𝐼 = ( Itv ‘ 𝐺 )
isperp.l 𝐿 = ( LineG ‘ 𝐺 )
isperp.g ( 𝜑𝐺 ∈ TarskiG )
isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
foot.x ( 𝜑𝐶𝑃 )
foot.y ( 𝜑 → ¬ 𝐶𝐴 )
footexlem.e ( 𝜑𝐸𝑃 )
footexlem.f ( 𝜑𝐹𝑃 )
footexlem.r ( 𝜑𝑅𝑃 )
footexlem.x ( 𝜑𝑋𝑃 )
footexlem.y ( 𝜑𝑌𝑃 )
footexlem.z ( 𝜑𝑍𝑃 )
footexlem.d ( 𝜑𝐷𝑃 )
footexlem.1 ( 𝜑𝐴 = ( 𝐸 𝐿 𝐹 ) )
footexlem.2 ( 𝜑𝐸𝐹 )
footexlem.3 ( 𝜑𝐸 ∈ ( 𝐹 𝐼 𝑌 ) )
footexlem.4 ( 𝜑 → ( 𝐸 𝑌 ) = ( 𝐸 𝐶 ) )
footexlem.5 ( 𝜑𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) )
footexlem.6 ( 𝜑𝑌 ∈ ( 𝐸 𝐼 𝑍 ) )
footexlem.7 ( 𝜑 → ( 𝑌 𝑍 ) = ( 𝑌 𝑅 ) )
footexlem.q ( 𝜑𝑄𝑃 )
footexlem.8 ( 𝜑𝑌 ∈ ( 𝑅 𝐼 𝑄 ) )
footexlem.9 ( 𝜑 → ( 𝑌 𝑄 ) = ( 𝑌 𝐸 ) )
footexlem.10 ( 𝜑𝑌 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) 𝐼 𝐷 ) )
footexlem.11 ( 𝜑 → ( 𝑌 𝐷 ) = ( 𝑌 𝐶 ) )
footexlem.12 ( 𝜑𝐷 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) )
Assertion footexlem1 ( 𝜑𝑋𝐴 )

Proof

Step Hyp Ref Expression
1 isperp.p 𝑃 = ( Base ‘ 𝐺 )
2 isperp.d = ( dist ‘ 𝐺 )
3 isperp.i 𝐼 = ( Itv ‘ 𝐺 )
4 isperp.l 𝐿 = ( LineG ‘ 𝐺 )
5 isperp.g ( 𝜑𝐺 ∈ TarskiG )
6 isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
7 foot.x ( 𝜑𝐶𝑃 )
8 foot.y ( 𝜑 → ¬ 𝐶𝐴 )
9 footexlem.e ( 𝜑𝐸𝑃 )
10 footexlem.f ( 𝜑𝐹𝑃 )
11 footexlem.r ( 𝜑𝑅𝑃 )
12 footexlem.x ( 𝜑𝑋𝑃 )
13 footexlem.y ( 𝜑𝑌𝑃 )
14 footexlem.z ( 𝜑𝑍𝑃 )
15 footexlem.d ( 𝜑𝐷𝑃 )
16 footexlem.1 ( 𝜑𝐴 = ( 𝐸 𝐿 𝐹 ) )
17 footexlem.2 ( 𝜑𝐸𝐹 )
18 footexlem.3 ( 𝜑𝐸 ∈ ( 𝐹 𝐼 𝑌 ) )
19 footexlem.4 ( 𝜑 → ( 𝐸 𝑌 ) = ( 𝐸 𝐶 ) )
20 footexlem.5 ( 𝜑𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) )
21 footexlem.6 ( 𝜑𝑌 ∈ ( 𝐸 𝐼 𝑍 ) )
22 footexlem.7 ( 𝜑 → ( 𝑌 𝑍 ) = ( 𝑌 𝑅 ) )
23 footexlem.q ( 𝜑𝑄𝑃 )
24 footexlem.8 ( 𝜑𝑌 ∈ ( 𝑅 𝐼 𝑄 ) )
25 footexlem.9 ( 𝜑 → ( 𝑌 𝑄 ) = ( 𝑌 𝐸 ) )
26 footexlem.10 ( 𝜑𝑌 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) 𝐼 𝐷 ) )
27 footexlem.11 ( 𝜑 → ( 𝑌 𝐷 ) = ( 𝑌 𝐶 ) )
28 footexlem.12 ( 𝜑𝐷 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) )
29 22 eqcomd ( 𝜑 → ( 𝑌 𝑅 ) = ( 𝑌 𝑍 ) )
30 17 necomd ( 𝜑𝐹𝐸 )
31 1 3 4 5 10 9 13 30 18 btwnlng3 ( 𝜑𝑌 ∈ ( 𝐹 𝐿 𝐸 ) )
32 1 3 4 5 9 10 13 17 31 lncom ( 𝜑𝑌 ∈ ( 𝐸 𝐿 𝐹 ) )
33 32 16 eleqtrrd ( 𝜑𝑌𝐴 )
34 nelne2 ( ( 𝑌𝐴 ∧ ¬ 𝐶𝐴 ) → 𝑌𝐶 )
35 33 8 34 syl2anc ( 𝜑𝑌𝐶 )
36 35 necomd ( 𝜑𝐶𝑌 )
37 20 36 eqnetrrd ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ≠ 𝑌 )
38 eqid ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 )
39 eqid ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 )
40 1 2 3 4 38 5 11 39 13 mirinv ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) = 𝑌𝑅 = 𝑌 ) )
41 40 necon3bid ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ≠ 𝑌𝑅𝑌 ) )
42 37 41 mpbid ( 𝜑𝑅𝑌 )
43 42 necomd ( 𝜑𝑌𝑅 )
44 1 2 3 5 13 11 13 14 29 43 tgcgrneq ( 𝜑𝑌𝑍 )
45 44 necomd ( 𝜑𝑍𝑌 )
46 eqid ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 )
47 eqid ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 )
48 1 2 3 4 38 5 14 46 23 mircl ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ∈ 𝑃 )
49 1 2 3 4 38 5 11 39 13 mirbtwn ( 𝜑𝑅 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) 𝐼 𝑌 ) )
50 20 oveq1d ( 𝜑 → ( 𝐶 𝐼 𝑌 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) 𝐼 𝑌 ) )
51 49 50 eleqtrrd ( 𝜑𝑅 ∈ ( 𝐶 𝐼 𝑌 ) )
52 1 2 3 5 7 11 13 23 42 51 24 tgbtwnouttr2 ( 𝜑𝑌 ∈ ( 𝐶 𝐼 𝑄 ) )
53 1 2 3 5 7 13 23 52 tgbtwncom ( 𝜑𝑌 ∈ ( 𝑄 𝐼 𝐶 ) )
54 eqid ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 )
55 20 oveq2d ( 𝜑 → ( 𝐸 𝐶 ) = ( 𝐸 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) )
56 19 55 eqtrd ( 𝜑 → ( 𝐸 𝑌 ) = ( 𝐸 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) )
57 1 2 3 4 38 5 9 11 13 israg ( 𝜑 → ( ⟨“ 𝐸 𝑅 𝑌 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐸 𝑌 ) = ( 𝐸 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) ) )
58 56 57 mpbird ( 𝜑 → ⟨“ 𝐸 𝑅 𝑌 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
59 1 2 3 5 9 13 9 7 19 tgcgrcomlr ( 𝜑 → ( 𝑌 𝐸 ) = ( 𝐶 𝐸 ) )
60 25 59 eqtr2d ( 𝜑 → ( 𝐶 𝐸 ) = ( 𝑌 𝑄 ) )
61 1 3 4 5 9 10 17 tglinerflx1 ( 𝜑𝐸 ∈ ( 𝐸 𝐿 𝐹 ) )
62 61 16 eleqtrrd ( 𝜑𝐸𝐴 )
63 nelne2 ( ( 𝐸𝐴 ∧ ¬ 𝐶𝐴 ) → 𝐸𝐶 )
64 62 8 63 syl2anc ( 𝜑𝐸𝐶 )
65 64 necomd ( 𝜑𝐶𝐸 )
66 1 2 3 5 7 9 13 23 60 65 tgcgrneq ( 𝜑𝑌𝑄 )
67 66 necomd ( 𝜑𝑄𝑌 )
68 1 2 3 5 11 13 23 24 tgbtwncom ( 𝜑𝑌 ∈ ( 𝑄 𝐼 𝑅 ) )
69 1 2 3 5 13 23 13 9 25 tgcgrcomlr ( 𝜑 → ( 𝑄 𝑌 ) = ( 𝐸 𝑌 ) )
70 1 2 3 5 23 9 axtgcgrrflx ( 𝜑 → ( 𝑄 𝐸 ) = ( 𝐸 𝑄 ) )
71 25 eqcomd ( 𝜑 → ( 𝑌 𝐸 ) = ( 𝑌 𝑄 ) )
72 1 2 3 5 23 13 11 9 13 14 9 23 67 68 21 69 29 70 71 axtg5seg ( 𝜑 → ( 𝑅 𝐸 ) = ( 𝑍 𝑄 ) )
73 1 2 3 5 11 9 14 23 72 tgcgrcomlr ( 𝜑 → ( 𝐸 𝑅 ) = ( 𝑄 𝑍 ) )
74 1 2 3 5 13 11 13 14 29 tgcgrcomlr ( 𝜑 → ( 𝑅 𝑌 ) = ( 𝑍 𝑌 ) )
75 1 2 54 5 9 11 13 23 14 13 73 74 71 trgcgr ( 𝜑 → ⟨“ 𝐸 𝑅 𝑌 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑄 𝑍 𝑌 ”⟩ )
76 1 2 3 4 38 5 9 11 13 54 23 14 13 58 75 ragcgr ( 𝜑 → ⟨“ 𝑄 𝑍 𝑌 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
77 1 2 3 4 38 5 23 14 13 76 ragcom ( 𝜑 → ⟨“ 𝑌 𝑍 𝑄 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
78 1 2 3 4 38 5 13 14 23 israg ( 𝜑 → ( ⟨“ 𝑌 𝑍 𝑄 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑌 𝑄 ) = ( 𝑌 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) ) )
79 77 78 mpbid ( 𝜑 → ( 𝑌 𝑄 ) = ( 𝑌 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) )
80 27 eqcomd ( 𝜑 → ( 𝑌 𝐶 ) = ( 𝑌 𝐷 ) )
81 eqidd ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) )
82 1 2 3 4 38 5 46 47 23 48 13 7 15 14 12 53 26 79 80 81 28 krippen ( 𝜑𝑌 ∈ ( 𝑍 𝐼 𝑋 ) )
83 1 3 4 5 14 13 12 45 82 btwnlng3 ( 𝜑𝑋 ∈ ( 𝑍 𝐿 𝑌 ) )
84 1 3 4 5 13 14 12 44 83 lncom ( 𝜑𝑋 ∈ ( 𝑌 𝐿 𝑍 ) )
85 19 eqcomd ( 𝜑 → ( 𝐸 𝐶 ) = ( 𝐸 𝑌 ) )
86 1 2 3 5 9 7 9 13 85 64 tgcgrneq ( 𝜑𝐸𝑌 )
87 1 3 4 5 9 13 14 86 21 btwnlng3 ( 𝜑𝑍 ∈ ( 𝐸 𝐿 𝑌 ) )
88 1 3 4 5 9 13 86 86 6 62 33 tglinethru ( 𝜑𝐴 = ( 𝐸 𝐿 𝑌 ) )
89 87 88 eleqtrrd ( 𝜑𝑍𝐴 )
90 1 3 4 5 13 14 44 44 6 33 89 tglinethru ( 𝜑𝐴 = ( 𝑌 𝐿 𝑍 ) )
91 84 90 eleqtrrd ( 𝜑𝑋𝐴 )