Description: Lemma for footex . (Contributed by Thierry Arnoux, 19-Oct-2019) (Revised by Thierry Arnoux, 1-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isperp.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
isperp.d | ⊢ − = ( dist ‘ 𝐺 ) | ||
isperp.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | ||
isperp.l | ⊢ 𝐿 = ( LineG ‘ 𝐺 ) | ||
isperp.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | ||
isperp.a | ⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) | ||
foot.x | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | ||
foot.y | ⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐴 ) | ||
footexlem.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) | ||
footexlem.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) | ||
footexlem.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) | ||
footexlem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) | ||
footexlem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) | ||
footexlem.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) | ||
footexlem.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) | ||
footexlem.1 | ⊢ ( 𝜑 → 𝐴 = ( 𝐸 𝐿 𝐹 ) ) | ||
footexlem.2 | ⊢ ( 𝜑 → 𝐸 ≠ 𝐹 ) | ||
footexlem.3 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐹 𝐼 𝑌 ) ) | ||
footexlem.4 | ⊢ ( 𝜑 → ( 𝐸 − 𝑌 ) = ( 𝐸 − 𝐶 ) ) | ||
footexlem.5 | ⊢ ( 𝜑 → 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) | ||
footexlem.6 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐸 𝐼 𝑍 ) ) | ||
footexlem.7 | ⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) = ( 𝑌 − 𝑅 ) ) | ||
footexlem.q | ⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) | ||
footexlem.8 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑅 𝐼 𝑄 ) ) | ||
footexlem.9 | ⊢ ( 𝜑 → ( 𝑌 − 𝑄 ) = ( 𝑌 − 𝐸 ) ) | ||
footexlem.10 | ⊢ ( 𝜑 → 𝑌 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) 𝐼 𝐷 ) ) | ||
footexlem.11 | ⊢ ( 𝜑 → ( 𝑌 − 𝐷 ) = ( 𝑌 − 𝐶 ) ) | ||
footexlem.12 | ⊢ ( 𝜑 → 𝐷 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) | ||
Assertion | footexlem1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isperp.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
2 | isperp.d | ⊢ − = ( dist ‘ 𝐺 ) | |
3 | isperp.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | |
4 | isperp.l | ⊢ 𝐿 = ( LineG ‘ 𝐺 ) | |
5 | isperp.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | |
6 | isperp.a | ⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) | |
7 | foot.x | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | |
8 | foot.y | ⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐴 ) | |
9 | footexlem.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) | |
10 | footexlem.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) | |
11 | footexlem.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) | |
12 | footexlem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) | |
13 | footexlem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) | |
14 | footexlem.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) | |
15 | footexlem.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) | |
16 | footexlem.1 | ⊢ ( 𝜑 → 𝐴 = ( 𝐸 𝐿 𝐹 ) ) | |
17 | footexlem.2 | ⊢ ( 𝜑 → 𝐸 ≠ 𝐹 ) | |
18 | footexlem.3 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐹 𝐼 𝑌 ) ) | |
19 | footexlem.4 | ⊢ ( 𝜑 → ( 𝐸 − 𝑌 ) = ( 𝐸 − 𝐶 ) ) | |
20 | footexlem.5 | ⊢ ( 𝜑 → 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) | |
21 | footexlem.6 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐸 𝐼 𝑍 ) ) | |
22 | footexlem.7 | ⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) = ( 𝑌 − 𝑅 ) ) | |
23 | footexlem.q | ⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) | |
24 | footexlem.8 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑅 𝐼 𝑄 ) ) | |
25 | footexlem.9 | ⊢ ( 𝜑 → ( 𝑌 − 𝑄 ) = ( 𝑌 − 𝐸 ) ) | |
26 | footexlem.10 | ⊢ ( 𝜑 → 𝑌 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) 𝐼 𝐷 ) ) | |
27 | footexlem.11 | ⊢ ( 𝜑 → ( 𝑌 − 𝐷 ) = ( 𝑌 − 𝐶 ) ) | |
28 | footexlem.12 | ⊢ ( 𝜑 → 𝐷 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) | |
29 | 22 | eqcomd | ⊢ ( 𝜑 → ( 𝑌 − 𝑅 ) = ( 𝑌 − 𝑍 ) ) |
30 | 17 | necomd | ⊢ ( 𝜑 → 𝐹 ≠ 𝐸 ) |
31 | 1 3 4 5 10 9 13 30 18 | btwnlng3 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐹 𝐿 𝐸 ) ) |
32 | 1 3 4 5 9 10 13 17 31 | lncom | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐸 𝐿 𝐹 ) ) |
33 | 32 16 | eleqtrrd | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
34 | nelne2 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝑌 ≠ 𝐶 ) | |
35 | 33 8 34 | syl2anc | ⊢ ( 𝜑 → 𝑌 ≠ 𝐶 ) |
36 | 35 | necomd | ⊢ ( 𝜑 → 𝐶 ≠ 𝑌 ) |
37 | 20 36 | eqnetrrd | ⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ≠ 𝑌 ) |
38 | eqid | ⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) | |
39 | eqid | ⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) | |
40 | 1 2 3 4 38 5 11 39 13 | mirinv | ⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) = 𝑌 ↔ 𝑅 = 𝑌 ) ) |
41 | 40 | necon3bid | ⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ≠ 𝑌 ↔ 𝑅 ≠ 𝑌 ) ) |
42 | 37 41 | mpbid | ⊢ ( 𝜑 → 𝑅 ≠ 𝑌 ) |
43 | 42 | necomd | ⊢ ( 𝜑 → 𝑌 ≠ 𝑅 ) |
44 | 1 2 3 5 13 11 13 14 29 43 | tgcgrneq | ⊢ ( 𝜑 → 𝑌 ≠ 𝑍 ) |
45 | 44 | necomd | ⊢ ( 𝜑 → 𝑍 ≠ 𝑌 ) |
46 | eqid | ⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) | |
47 | eqid | ⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) | |
48 | 1 2 3 4 38 5 14 46 23 | mircl | ⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ∈ 𝑃 ) |
49 | 1 2 3 4 38 5 11 39 13 | mirbtwn | ⊢ ( 𝜑 → 𝑅 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) 𝐼 𝑌 ) ) |
50 | 20 | oveq1d | ⊢ ( 𝜑 → ( 𝐶 𝐼 𝑌 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) 𝐼 𝑌 ) ) |
51 | 49 50 | eleqtrrd | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝐶 𝐼 𝑌 ) ) |
52 | 1 2 3 5 7 11 13 23 42 51 24 | tgbtwnouttr2 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 𝐼 𝑄 ) ) |
53 | 1 2 3 5 7 13 23 52 | tgbtwncom | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑄 𝐼 𝐶 ) ) |
54 | eqid | ⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) | |
55 | 20 | oveq2d | ⊢ ( 𝜑 → ( 𝐸 − 𝐶 ) = ( 𝐸 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
56 | 19 55 | eqtrd | ⊢ ( 𝜑 → ( 𝐸 − 𝑌 ) = ( 𝐸 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
57 | 1 2 3 4 38 5 9 11 13 | israg | ⊢ ( 𝜑 → ( 〈“ 𝐸 𝑅 𝑌 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐸 − 𝑌 ) = ( 𝐸 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
58 | 56 57 | mpbird | ⊢ ( 𝜑 → 〈“ 𝐸 𝑅 𝑌 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
59 | 1 2 3 5 9 13 9 7 19 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝑌 − 𝐸 ) = ( 𝐶 − 𝐸 ) ) |
60 | 25 59 | eqtr2d | ⊢ ( 𝜑 → ( 𝐶 − 𝐸 ) = ( 𝑌 − 𝑄 ) ) |
61 | 1 3 4 5 9 10 17 | tglinerflx1 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐸 𝐿 𝐹 ) ) |
62 | 61 16 | eleqtrrd | ⊢ ( 𝜑 → 𝐸 ∈ 𝐴 ) |
63 | nelne2 | ⊢ ( ( 𝐸 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝐸 ≠ 𝐶 ) | |
64 | 62 8 63 | syl2anc | ⊢ ( 𝜑 → 𝐸 ≠ 𝐶 ) |
65 | 64 | necomd | ⊢ ( 𝜑 → 𝐶 ≠ 𝐸 ) |
66 | 1 2 3 5 7 9 13 23 60 65 | tgcgrneq | ⊢ ( 𝜑 → 𝑌 ≠ 𝑄 ) |
67 | 66 | necomd | ⊢ ( 𝜑 → 𝑄 ≠ 𝑌 ) |
68 | 1 2 3 5 11 13 23 24 | tgbtwncom | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑄 𝐼 𝑅 ) ) |
69 | 1 2 3 5 13 23 13 9 25 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝑄 − 𝑌 ) = ( 𝐸 − 𝑌 ) ) |
70 | 1 2 3 5 23 9 | axtgcgrrflx | ⊢ ( 𝜑 → ( 𝑄 − 𝐸 ) = ( 𝐸 − 𝑄 ) ) |
71 | 25 | eqcomd | ⊢ ( 𝜑 → ( 𝑌 − 𝐸 ) = ( 𝑌 − 𝑄 ) ) |
72 | 1 2 3 5 23 13 11 9 13 14 9 23 67 68 21 69 29 70 71 | axtg5seg | ⊢ ( 𝜑 → ( 𝑅 − 𝐸 ) = ( 𝑍 − 𝑄 ) ) |
73 | 1 2 3 5 11 9 14 23 72 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝐸 − 𝑅 ) = ( 𝑄 − 𝑍 ) ) |
74 | 1 2 3 5 13 11 13 14 29 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝑅 − 𝑌 ) = ( 𝑍 − 𝑌 ) ) |
75 | 1 2 54 5 9 11 13 23 14 13 73 74 71 | trgcgr | ⊢ ( 𝜑 → 〈“ 𝐸 𝑅 𝑌 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑄 𝑍 𝑌 ”〉 ) |
76 | 1 2 3 4 38 5 9 11 13 54 23 14 13 58 75 | ragcgr | ⊢ ( 𝜑 → 〈“ 𝑄 𝑍 𝑌 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
77 | 1 2 3 4 38 5 23 14 13 76 | ragcom | ⊢ ( 𝜑 → 〈“ 𝑌 𝑍 𝑄 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
78 | 1 2 3 4 38 5 13 14 23 | israg | ⊢ ( 𝜑 → ( 〈“ 𝑌 𝑍 𝑄 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑌 − 𝑄 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) ) ) |
79 | 77 78 | mpbid | ⊢ ( 𝜑 → ( 𝑌 − 𝑄 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) ) |
80 | 27 | eqcomd | ⊢ ( 𝜑 → ( 𝑌 − 𝐶 ) = ( 𝑌 − 𝐷 ) ) |
81 | eqidd | ⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) | |
82 | 1 2 3 4 38 5 46 47 23 48 13 7 15 14 12 53 26 79 80 81 28 | krippen | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑍 𝐼 𝑋 ) ) |
83 | 1 3 4 5 14 13 12 45 82 | btwnlng3 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑍 𝐿 𝑌 ) ) |
84 | 1 3 4 5 13 14 12 44 83 | lncom | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ) |
85 | 19 | eqcomd | ⊢ ( 𝜑 → ( 𝐸 − 𝐶 ) = ( 𝐸 − 𝑌 ) ) |
86 | 1 2 3 5 9 7 9 13 85 64 | tgcgrneq | ⊢ ( 𝜑 → 𝐸 ≠ 𝑌 ) |
87 | 1 3 4 5 9 13 14 86 21 | btwnlng3 | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐸 𝐿 𝑌 ) ) |
88 | 1 3 4 5 9 13 86 86 6 62 33 | tglinethru | ⊢ ( 𝜑 → 𝐴 = ( 𝐸 𝐿 𝑌 ) ) |
89 | 87 88 | eleqtrrd | ⊢ ( 𝜑 → 𝑍 ∈ 𝐴 ) |
90 | 1 3 4 5 13 14 44 44 6 33 89 | tglinethru | ⊢ ( 𝜑 → 𝐴 = ( 𝑌 𝐿 𝑍 ) ) |
91 | 84 90 | eleqtrrd | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |