| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isperp.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
isperp.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
isperp.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
isperp.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
isperp.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
isperp.a |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
| 7 |
|
footne.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 8 |
|
footne.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 9 |
|
footne.1 |
⊢ ( 𝜑 → ( 𝑋 𝐿 𝑌 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) |
| 10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → 𝐺 ∈ TarskiG ) |
| 11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → 𝐴 ∈ ran 𝐿 ) |
| 12 |
4 5 9
|
perpln1 |
⊢ ( 𝜑 → ( 𝑋 𝐿 𝑌 ) ∈ ran 𝐿 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 𝐿 𝑌 ) ∈ ran 𝐿 ) |
| 14 |
1 2 3 4 5 12 6 9
|
perpneq |
⊢ ( 𝜑 → ( 𝑋 𝐿 𝑌 ) ≠ 𝐴 ) |
| 15 |
14
|
necomd |
⊢ ( 𝜑 → 𝐴 ≠ ( 𝑋 𝐿 𝑌 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → 𝐴 ≠ ( 𝑋 𝐿 𝑌 ) ) |
| 17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
| 18 |
1 4 3 5 6 7
|
tglnpt |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 19 |
1 3 4 5 18 8 12
|
tglnne |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
| 20 |
1 3 4 5 18 8 19
|
tglinerflx1 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑋 𝐿 𝑌 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ∈ ( 𝑋 𝐿 𝑌 ) ) |
| 22 |
17 21
|
elind |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ∈ ( 𝐴 ∩ ( 𝑋 𝐿 𝑌 ) ) ) |
| 23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) |
| 24 |
1 3 4 5 18 8 19
|
tglinerflx2 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 𝐿 𝑌 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ ( 𝑋 𝐿 𝑌 ) ) |
| 26 |
23 25
|
elind |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ ( 𝐴 ∩ ( 𝑋 𝐿 𝑌 ) ) ) |
| 27 |
1 3 4 10 11 13 16 22 26
|
tglineineq |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 = 𝑌 ) |
| 28 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ≠ 𝑌 ) |
| 29 |
27 28
|
pm2.21ddne |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → ¬ 𝑌 ∈ 𝐴 ) |
| 30 |
29
|
pm2.01da |
⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝐴 ) |