| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffo3 | ⊢ ( 𝐹 : ( 𝐴  ×  𝐵 ) –onto→ 𝐶  ↔  ( 𝐹 : ( 𝐴  ×  𝐵 ) ⟶ 𝐶  ∧  ∀ 𝑧  ∈  𝐶 ∃ 𝑤  ∈  ( 𝐴  ×  𝐵 ) 𝑧  =  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑦 〉  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 3 |  | df-ov | ⊢ ( 𝑥 𝐹 𝑦 )  =  ( 𝐹 ‘ 〈 𝑥 ,  𝑦 〉 ) | 
						
							| 4 | 2 3 | eqtr4di | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑦 〉  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝑥 𝐹 𝑦 ) ) | 
						
							| 5 | 4 | eqeq2d | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑦 〉  →  ( 𝑧  =  ( 𝐹 ‘ 𝑤 )  ↔  𝑧  =  ( 𝑥 𝐹 𝑦 ) ) ) | 
						
							| 6 | 5 | rexxp | ⊢ ( ∃ 𝑤  ∈  ( 𝐴  ×  𝐵 ) 𝑧  =  ( 𝐹 ‘ 𝑤 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑥 𝐹 𝑦 ) ) | 
						
							| 7 | 6 | ralbii | ⊢ ( ∀ 𝑧  ∈  𝐶 ∃ 𝑤  ∈  ( 𝐴  ×  𝐵 ) 𝑧  =  ( 𝐹 ‘ 𝑤 )  ↔  ∀ 𝑧  ∈  𝐶 ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑥 𝐹 𝑦 ) ) | 
						
							| 8 | 7 | anbi2i | ⊢ ( ( 𝐹 : ( 𝐴  ×  𝐵 ) ⟶ 𝐶  ∧  ∀ 𝑧  ∈  𝐶 ∃ 𝑤  ∈  ( 𝐴  ×  𝐵 ) 𝑧  =  ( 𝐹 ‘ 𝑤 ) )  ↔  ( 𝐹 : ( 𝐴  ×  𝐵 ) ⟶ 𝐶  ∧  ∀ 𝑧  ∈  𝐶 ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑥 𝐹 𝑦 ) ) ) | 
						
							| 9 | 1 8 | bitri | ⊢ ( 𝐹 : ( 𝐴  ×  𝐵 ) –onto→ 𝐶  ↔  ( 𝐹 : ( 𝐴  ×  𝐵 ) ⟶ 𝐶  ∧  ∀ 𝑧  ∈  𝐶 ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑥 𝐹 𝑦 ) ) ) |