Step |
Hyp |
Ref |
Expression |
1 |
|
dffo3 |
⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –onto→ 𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧 ∈ 𝐶 ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ) ) |
2 |
|
fveq2 |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
3 |
|
df-ov |
⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) |
4 |
2 3
|
eqtr4di |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝑥 𝐹 𝑦 ) ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ 𝑧 = ( 𝑥 𝐹 𝑦 ) ) ) |
6 |
5
|
rexxp |
⊢ ( ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐶 ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑧 ∈ 𝐶 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) |
8 |
7
|
anbi2i |
⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧 ∈ 𝐶 ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧 ∈ 𝐶 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) ) |
9 |
1 8
|
bitri |
⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –onto→ 𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧 ∈ 𝐶 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) ) |