Step |
Hyp |
Ref |
Expression |
1 |
|
imassrn |
⊢ ( ◡ 𝐹 “ 𝑎 ) ⊆ ran ◡ 𝐹 |
2 |
|
dfdm4 |
⊢ dom 𝐹 = ran ◡ 𝐹 |
3 |
|
fof |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
4 |
3
|
fdmd |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → dom 𝐹 = 𝐴 ) |
5 |
2 4
|
eqtr3id |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran ◡ 𝐹 = 𝐴 ) |
6 |
1 5
|
sseqtrid |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) |
7 |
6
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) |
8 |
|
cnvexg |
⊢ ( 𝐹 ∈ 𝑉 → ◡ 𝐹 ∈ V ) |
9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ◡ 𝐹 ∈ V ) |
10 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ 𝑎 ) ∈ V ) |
11 |
|
elpwg |
⊢ ( ( ◡ 𝐹 “ 𝑎 ) ∈ V → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ↔ ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) ) |
12 |
9 10 11
|
3syl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ↔ ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) ) |
13 |
7 12
|
mpbird |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) |
14 |
13
|
a1d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( 𝑎 ∈ 𝒫 𝐵 → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) ) |
15 |
|
imaeq2 |
⊢ ( ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑏 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑏 ) ) ) |
17 |
|
simpllr |
⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
18 |
|
simplrl |
⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝑎 ∈ 𝒫 𝐵 ) |
19 |
18
|
elpwid |
⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝑎 ⊆ 𝐵 ) |
20 |
|
foimacnv |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) |
21 |
17 19 20
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) |
22 |
|
simplrr |
⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝑏 ∈ 𝒫 𝐵 ) |
23 |
22
|
elpwid |
⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝑏 ⊆ 𝐵 ) |
24 |
|
foimacnv |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑏 ) ) = 𝑏 ) |
25 |
17 23 24
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑏 ) ) = 𝑏 ) |
26 |
16 21 25
|
3eqtr3d |
⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝑎 = 𝑏 ) |
27 |
26
|
ex |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) → ( ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) → 𝑎 = 𝑏 ) ) |
28 |
|
imaeq2 |
⊢ ( 𝑎 = 𝑏 → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) |
29 |
27 28
|
impbid1 |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) → ( ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
30 |
29
|
ex |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) → ( ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) ) |
31 |
|
rnexg |
⊢ ( 𝐹 ∈ 𝑉 → ran 𝐹 ∈ V ) |
32 |
|
forn |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
33 |
32
|
eleq1d |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ran 𝐹 ∈ V ↔ 𝐵 ∈ V ) ) |
34 |
31 33
|
syl5ibcom |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) ) |
35 |
34
|
imp |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ∈ V ) |
36 |
35
|
pwexd |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝒫 𝐵 ∈ V ) |
37 |
|
dmfex |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐴 ∈ V ) |
38 |
3 37
|
sylan2 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐴 ∈ V ) |
39 |
38
|
pwexd |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝒫 𝐴 ∈ V ) |
40 |
14 30 36 39
|
dom3d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝒫 𝐵 ≼ 𝒫 𝐴 ) |