Step |
Hyp |
Ref |
Expression |
1 |
|
funres |
⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ 𝐴 ) ) |
2 |
1
|
anim1i |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( Fun ( 𝐹 ↾ 𝐴 ) ∧ 𝐴 ⊆ dom 𝐹 ) ) |
3 |
|
df-fn |
⊢ ( ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ↔ ( Fun ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ) ) |
4 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
5 |
4
|
eqcomi |
⊢ ran ( 𝐹 ↾ 𝐴 ) = ( 𝐹 “ 𝐴 ) |
6 |
|
df-fo |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ ( ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ∧ ran ( 𝐹 ↾ 𝐴 ) = ( 𝐹 “ 𝐴 ) ) ) |
7 |
5 6
|
mpbiran2 |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
8 |
|
ssdmres |
⊢ ( 𝐴 ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ) |
9 |
8
|
anbi2i |
⊢ ( ( Fun ( 𝐹 ↾ 𝐴 ) ∧ 𝐴 ⊆ dom 𝐹 ) ↔ ( Fun ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ) ) |
10 |
3 7 9
|
3bitr4i |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ ( Fun ( 𝐹 ↾ 𝐴 ) ∧ 𝐴 ⊆ dom 𝐹 ) ) |
11 |
2 10
|
sylibr |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |