Metamath Proof Explorer


Theorem fores

Description: Restriction of an onto function. (Contributed by NM, 4-Mar-1997)

Ref Expression
Assertion fores ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 funres ( Fun 𝐹 → Fun ( 𝐹𝐴 ) )
2 1 anim1i ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( Fun ( 𝐹𝐴 ) ∧ 𝐴 ⊆ dom 𝐹 ) )
3 df-fn ( ( 𝐹𝐴 ) Fn 𝐴 ↔ ( Fun ( 𝐹𝐴 ) ∧ dom ( 𝐹𝐴 ) = 𝐴 ) )
4 df-ima ( 𝐹𝐴 ) = ran ( 𝐹𝐴 )
5 4 eqcomi ran ( 𝐹𝐴 ) = ( 𝐹𝐴 )
6 df-fo ( ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) ↔ ( ( 𝐹𝐴 ) Fn 𝐴 ∧ ran ( 𝐹𝐴 ) = ( 𝐹𝐴 ) ) )
7 5 6 mpbiran2 ( ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) ↔ ( 𝐹𝐴 ) Fn 𝐴 )
8 ssdmres ( 𝐴 ⊆ dom 𝐹 ↔ dom ( 𝐹𝐴 ) = 𝐴 )
9 8 anbi2i ( ( Fun ( 𝐹𝐴 ) ∧ 𝐴 ⊆ dom 𝐹 ) ↔ ( Fun ( 𝐹𝐴 ) ∧ dom ( 𝐹𝐴 ) = 𝐴 ) )
10 3 7 9 3bitr4i ( ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) ↔ ( Fun ( 𝐹𝐴 ) ∧ 𝐴 ⊆ dom 𝐹 ) )
11 2 10 sylibr ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) )