Metamath Proof Explorer


Theorem fornex

Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004)

Ref Expression
Assertion fornex ( 𝐴𝐶 → ( 𝐹 : 𝐴onto𝐵𝐵 ∈ V ) )

Proof

Step Hyp Ref Expression
1 fofun ( 𝐹 : 𝐴onto𝐵 → Fun 𝐹 )
2 funrnex ( dom 𝐹𝐶 → ( Fun 𝐹 → ran 𝐹 ∈ V ) )
3 1 2 syl5com ( 𝐹 : 𝐴onto𝐵 → ( dom 𝐹𝐶 → ran 𝐹 ∈ V ) )
4 fof ( 𝐹 : 𝐴onto𝐵𝐹 : 𝐴𝐵 )
5 4 fdmd ( 𝐹 : 𝐴onto𝐵 → dom 𝐹 = 𝐴 )
6 5 eleq1d ( 𝐹 : 𝐴onto𝐵 → ( dom 𝐹𝐶𝐴𝐶 ) )
7 forn ( 𝐹 : 𝐴onto𝐵 → ran 𝐹 = 𝐵 )
8 7 eleq1d ( 𝐹 : 𝐴onto𝐵 → ( ran 𝐹 ∈ V ↔ 𝐵 ∈ V ) )
9 3 6 8 3imtr3d ( 𝐹 : 𝐴onto𝐵 → ( 𝐴𝐶𝐵 ∈ V ) )
10 9 com12 ( 𝐴𝐶 → ( 𝐹 : 𝐴onto𝐵𝐵 ∈ V ) )