Step |
Hyp |
Ref |
Expression |
1 |
|
fofun |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → Fun 𝐹 ) |
2 |
|
funrnex |
⊢ ( dom 𝐹 ∈ 𝐶 → ( Fun 𝐹 → ran 𝐹 ∈ V ) ) |
3 |
1 2
|
syl5com |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( dom 𝐹 ∈ 𝐶 → ran 𝐹 ∈ V ) ) |
4 |
|
fof |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
5 |
4
|
fdmd |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → dom 𝐹 = 𝐴 ) |
6 |
5
|
eleq1d |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( dom 𝐹 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) |
7 |
|
forn |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
8 |
7
|
eleq1d |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ran 𝐹 ∈ V ↔ 𝐵 ∈ V ) ) |
9 |
3 6 8
|
3imtr3d |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝐴 ∈ 𝐶 → 𝐵 ∈ V ) ) |
10 |
9
|
com12 |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) ) |