| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uniiun | 
							⊢ ∪  𝐵  =  ∪  𝑦  ∈  𝐵 𝑦  | 
						
						
							| 2 | 
							
								
							 | 
							elun1 | 
							⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( 𝐵  ∪  { ∅ } ) )  | 
						
						
							| 3 | 
							
								
							 | 
							foelcdmi | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  𝑦  ∈  ( 𝐵  ∪  { ∅ } ) )  →  ∃ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  𝑦 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylan2 | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  𝑦 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqimss2 | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑦  →  𝑦  ⊆  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							reximi | 
							⊢ ( ∃ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  𝑦  →  ∃ 𝑥  ∈  𝐴 𝑦  ⊆  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							syl | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑦  ⊆  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ralrimiva | 
							⊢ ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  →  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  ⊆  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							iunss2 | 
							⊢ ( ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  ⊆  ( 𝐹 ‘ 𝑥 )  →  ∪  𝑦  ∈  𝐵 𝑦  ⊆  ∪  𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  →  ∪  𝑦  ∈  𝐵 𝑦  ⊆  ∪  𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  𝐵  =  ∅ )  →  𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } ) )  | 
						
						
							| 12 | 
							
								
							 | 
							uneq1 | 
							⊢ ( 𝐵  =  ∅  →  ( 𝐵  ∪  { ∅ } )  =  ( ∅  ∪  { ∅ } ) )  | 
						
						
							| 13 | 
							
								
							 | 
							0un | 
							⊢ ( ∅  ∪  { ∅ } )  =  { ∅ }  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqtrdi | 
							⊢ ( 𝐵  =  ∅  →  ( 𝐵  ∪  { ∅ } )  =  { ∅ } )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantl | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  𝐵  =  ∅ )  →  ( 𝐵  ∪  { ∅ } )  =  { ∅ } )  | 
						
						
							| 16 | 
							
								
							 | 
							foeq3 | 
							⊢ ( ( 𝐵  ∪  { ∅ } )  =  { ∅ }  →  ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ↔  𝐹 : 𝐴 –onto→ { ∅ } ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  𝐵  =  ∅ )  →  ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ↔  𝐹 : 𝐴 –onto→ { ∅ } ) )  | 
						
						
							| 18 | 
							
								11 17
							 | 
							mpbid | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  𝐵  =  ∅ )  →  𝐹 : 𝐴 –onto→ { ∅ } )  | 
						
						
							| 19 | 
							
								
							 | 
							founiiun | 
							⊢ ( 𝐹 : 𝐴 –onto→ { ∅ }  →  ∪  { ∅ }  =  ∪  𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							unisn0 | 
							⊢ ∪  { ∅ }  =  ∅  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eqtr3di | 
							⊢ ( 𝐹 : 𝐴 –onto→ { ∅ }  →  ∪  𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ∅ )  | 
						
						
							| 22 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  ∪  𝑦  ∈  𝐵 𝑦  | 
						
						
							| 23 | 
							
								21 22
							 | 
							eqsstrdi | 
							⊢ ( 𝐹 : 𝐴 –onto→ { ∅ }  →  ∪  𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ⊆  ∪  𝑦  ∈  𝐵 𝑦 )  | 
						
						
							| 24 | 
							
								18 23
							 | 
							syl | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  𝐵  =  ∅ )  →  ∪  𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ⊆  ∪  𝑦  ∈  𝐵 𝑦 )  | 
						
						
							| 25 | 
							
								
							 | 
							ssid | 
							⊢ ( 𝐹 ‘ 𝑥 )  ⊆  ( 𝐹 ‘ 𝑥 )  | 
						
						
							| 26 | 
							
								
							 | 
							sseq2 | 
							⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝑥 )  ⊆  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  ⊆  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							rspcev | 
							⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  ⊆  ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							mpan2 | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  𝐵  →  ∃ 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantl | 
							⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  ¬  𝐵  =  ∅ )  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 )  →  ∃ 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 )  | 
						
						
							| 30 | 
							
								
							 | 
							fof | 
							⊢ ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  →  𝐹 : 𝐴 ⟶ ( 𝐵  ∪  { ∅ } ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐵  ∪  { ∅ } ) )  | 
						
						
							| 32 | 
							
								
							 | 
							elunnel1 | 
							⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐵  ∪  { ∅ } )  ∧  ¬  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑥 )  ∈  { ∅ } )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							sylan | 
							⊢ ( ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  𝑥  ∈  𝐴 )  ∧  ¬  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑥 )  ∈  { ∅ } )  | 
						
						
							| 34 | 
							
								
							 | 
							elsni | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  { ∅ }  →  ( 𝐹 ‘ 𝑥 )  =  ∅ )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							syl | 
							⊢ ( ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  𝑥  ∈  𝐴 )  ∧  ¬  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑥 )  =  ∅ )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantllr | 
							⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  ¬  𝐵  =  ∅ )  ∧  𝑥  ∈  𝐴 )  ∧  ¬  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑥 )  =  ∅ )  | 
						
						
							| 37 | 
							
								
							 | 
							neq0 | 
							⊢ ( ¬  𝐵  =  ∅  ↔  ∃ 𝑦 𝑦  ∈  𝐵 )  | 
						
						
							| 38 | 
							
								37
							 | 
							biimpi | 
							⊢ ( ¬  𝐵  =  ∅  →  ∃ 𝑦 𝑦  ∈  𝐵 )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantr | 
							⊢ ( ( ¬  𝐵  =  ∅  ∧  ( 𝐹 ‘ 𝑥 )  =  ∅ )  →  ∃ 𝑦 𝑦  ∈  𝐵 )  | 
						
						
							| 40 | 
							
								
							 | 
							id | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  ( 𝐹 ‘ 𝑥 )  =  ∅ )  | 
						
						
							| 41 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  𝑦  | 
						
						
							| 42 | 
							
								40 41
							 | 
							eqsstrdi | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 )  | 
						
						
							| 43 | 
							
								42
							 | 
							anim1ci | 
							⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  ∅  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ex | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  ( 𝑦  ∈  𝐵  →  ( 𝑦  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantl | 
							⊢ ( ( ¬  𝐵  =  ∅  ∧  ( 𝐹 ‘ 𝑥 )  =  ∅ )  →  ( 𝑦  ∈  𝐵  →  ( 𝑦  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							eximdv | 
							⊢ ( ( ¬  𝐵  =  ∅  ∧  ( 𝐹 ‘ 𝑥 )  =  ∅ )  →  ( ∃ 𝑦 𝑦  ∈  𝐵  →  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 ) ) )  | 
						
						
							| 47 | 
							
								39 46
							 | 
							mpd | 
							⊢ ( ( ¬  𝐵  =  ∅  ∧  ( 𝐹 ‘ 𝑥 )  =  ∅ )  →  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ⊆  𝑦  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 ) )  | 
						
						
							| 49 | 
							
								47 48
							 | 
							sylibr | 
							⊢ ( ( ¬  𝐵  =  ∅  ∧  ( 𝐹 ‘ 𝑥 )  =  ∅ )  →  ∃ 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 )  | 
						
						
							| 50 | 
							
								49
							 | 
							ad4ant24 | 
							⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  ¬  𝐵  =  ∅ )  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ∅ )  →  ∃ 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 )  | 
						
						
							| 51 | 
							
								36 50
							 | 
							syldan | 
							⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  ¬  𝐵  =  ∅ )  ∧  𝑥  ∈  𝐴 )  ∧  ¬  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 )  →  ∃ 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 )  | 
						
						
							| 52 | 
							
								29 51
							 | 
							pm2.61dan | 
							⊢ ( ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  ¬  𝐵  =  ∅ )  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 )  | 
						
						
							| 53 | 
							
								52
							 | 
							ralrimiva | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  ¬  𝐵  =  ∅ )  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ⊆  𝑦 )  | 
						
						
							| 54 | 
							
								
							 | 
							iunss2 | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ⊆  𝑦  →  ∪  𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ⊆  ∪  𝑦  ∈  𝐵 𝑦 )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							syl | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  ∧  ¬  𝐵  =  ∅ )  →  ∪  𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ⊆  ∪  𝑦  ∈  𝐵 𝑦 )  | 
						
						
							| 56 | 
							
								24 55
							 | 
							pm2.61dan | 
							⊢ ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  →  ∪  𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ⊆  ∪  𝑦  ∈  𝐵 𝑦 )  | 
						
						
							| 57 | 
							
								10 56
							 | 
							eqssd | 
							⊢ ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  →  ∪  𝑦  ∈  𝐵 𝑦  =  ∪  𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 58 | 
							
								1 57
							 | 
							eqtrid | 
							⊢ ( 𝐹 : 𝐴 –onto→ ( 𝐵  ∪  { ∅ } )  →  ∪  𝐵  =  ∪  𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 ) )  |