| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourier.f |
⊢ 𝐹 : ℝ ⟶ ℝ |
| 2 |
|
fourier.t |
⊢ 𝑇 = ( 2 · π ) |
| 3 |
|
fourier.per |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 4 |
|
fourier.g |
⊢ 𝐺 = ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) |
| 5 |
|
fourier.dmdv |
⊢ ( ( - π (,) π ) ∖ dom 𝐺 ) ∈ Fin |
| 6 |
|
fourier.dvcn |
⊢ 𝐺 ∈ ( dom 𝐺 –cn→ ℂ ) |
| 7 |
|
fourier.rlim |
⊢ ( 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐺 ) → ( ( 𝐺 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
| 8 |
|
fourier.llim |
⊢ ( 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐺 ) → ( ( 𝐺 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
| 9 |
|
fourier.x |
⊢ 𝑋 ∈ ℝ |
| 10 |
|
fourier.l |
⊢ 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) |
| 11 |
|
fourier.r |
⊢ 𝑅 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) |
| 12 |
|
fourier.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
| 13 |
|
fourier.b |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
| 14 |
1
|
a1i |
⊢ ( ⊤ → 𝐹 : ℝ ⟶ ℝ ) |
| 15 |
3
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 16 |
5
|
a1i |
⊢ ( ⊤ → ( ( - π (,) π ) ∖ dom 𝐺 ) ∈ Fin ) |
| 17 |
6
|
a1i |
⊢ ( ⊤ → 𝐺 ∈ ( dom 𝐺 –cn→ ℂ ) ) |
| 18 |
7
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
| 19 |
8
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
| 20 |
9
|
a1i |
⊢ ( ⊤ → 𝑋 ∈ ℝ ) |
| 21 |
10
|
a1i |
⊢ ( ⊤ → 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
| 22 |
11
|
a1i |
⊢ ( ⊤ → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
| 23 |
14 2 15 4 16 17 18 19 20 21 22 12 13
|
fourierd |
⊢ ( ⊤ → ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( ( 𝐿 + 𝑅 ) / 2 ) ) |
| 24 |
23
|
mptru |
⊢ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( ( 𝐿 + 𝑅 ) / 2 ) |