Step |
Hyp |
Ref |
Expression |
1 |
|
fouriercnp.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fouriercnp.t |
⊢ 𝑇 = ( 2 · π ) |
3 |
|
fouriercnp.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
4 |
|
fouriercnp.g |
⊢ 𝐺 = ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) |
5 |
|
fouriercnp.dmdv |
⊢ ( 𝜑 → ( ( - π (,) π ) ∖ dom 𝐺 ) ∈ Fin ) |
6 |
|
fouriercnp.dvcn |
⊢ ( 𝜑 → 𝐺 ∈ ( dom 𝐺 –cn→ ℂ ) ) |
7 |
|
fouriercnp.rlim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
8 |
|
fouriercnp.llim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
9 |
|
fouriercnp.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
10 |
|
fouriercnp.cnp |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 CnP 𝐽 ) ‘ 𝑋 ) ) |
11 |
|
fouriercnp.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
12 |
|
fouriercnp.b |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
13 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
14 |
9
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
15 |
13 14
|
eqtr4i |
⊢ ℝ = ∪ 𝐽 |
16 |
15
|
cnprcl |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐽 ) ‘ 𝑋 ) → 𝑋 ∈ ℝ ) |
17 |
10 16
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
18 |
|
limcresi |
⊢ ( 𝐹 limℂ 𝑋 ) ⊆ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) |
19 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
20 |
19
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
21 |
9 20
|
eqtri |
⊢ 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
22 |
21
|
oveq2i |
⊢ ( 𝐽 CnP 𝐽 ) = ( 𝐽 CnP ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
23 |
22
|
fveq1i |
⊢ ( ( 𝐽 CnP 𝐽 ) ‘ 𝑋 ) = ( ( 𝐽 CnP ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ‘ 𝑋 ) |
24 |
10 23
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 CnP ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ‘ 𝑋 ) ) |
25 |
19
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
26 |
25
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
27 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
28 |
27
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
29 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
30 |
15 29
|
cnprest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐹 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝐹 ∈ ( ( 𝐽 CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑋 ) ↔ 𝐹 ∈ ( ( 𝐽 CnP ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ‘ 𝑋 ) ) ) |
31 |
26 1 28 30
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑋 ) ↔ 𝐹 ∈ ( ( 𝐽 CnP ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ‘ 𝑋 ) ) ) |
32 |
24 31
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑋 ) ) |
33 |
19 21
|
cnplimc |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝑋 ∈ ℝ ) → ( 𝐹 ∈ ( ( 𝐽 CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑋 ) ↔ ( 𝐹 : ℝ ⟶ ℂ ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 limℂ 𝑋 ) ) ) ) |
34 |
27 17 33
|
sylancr |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑋 ) ↔ ( 𝐹 : ℝ ⟶ ℂ ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 limℂ 𝑋 ) ) ) ) |
35 |
32 34
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : ℝ ⟶ ℂ ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 limℂ 𝑋 ) ) ) |
36 |
35
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 limℂ 𝑋 ) ) |
37 |
18 36
|
sselid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
38 |
|
limcresi |
⊢ ( 𝐹 limℂ 𝑋 ) ⊆ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) |
39 |
38 36
|
sselid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
40 |
1 2 3 4 5 6 7 8 17 37 39 11 12
|
fourierd |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) ) |
41 |
1 17
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
42 |
41
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
43 |
42
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑋 ) ) ) |
44 |
43
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑋 ) ) = ( 2 · ( 𝐹 ‘ 𝑋 ) ) ) |
45 |
44
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) = ( ( 2 · ( 𝐹 ‘ 𝑋 ) ) / 2 ) ) |
46 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
47 |
|
2ne0 |
⊢ 2 ≠ 0 |
48 |
47
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
49 |
42 46 48
|
divcan3d |
⊢ ( 𝜑 → ( ( 2 · ( 𝐹 ‘ 𝑋 ) ) / 2 ) = ( 𝐹 ‘ 𝑋 ) ) |
50 |
40 45 49
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |