Step |
Hyp |
Ref |
Expression |
1 |
|
fourierd.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierd.t |
⊢ 𝑇 = ( 2 · π ) |
3 |
|
fourierd.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
4 |
|
fourierd.g |
⊢ 𝐺 = ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) |
5 |
|
fourierd.dmdv |
⊢ ( 𝜑 → ( ( - π (,) π ) ∖ dom 𝐺 ) ∈ Fin ) |
6 |
|
fourierd.dvcn |
⊢ ( 𝜑 → 𝐺 ∈ ( dom 𝐺 –cn→ ℂ ) ) |
7 |
|
fourierd.rlim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
8 |
|
fourierd.llim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
9 |
|
fourierd.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
10 |
|
fourierd.l |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
11 |
|
fourierd.r |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
12 |
|
fourierd.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
13 |
|
fourierd.b |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) |
15 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
16 |
12 15
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐴 |
17 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
18 |
16 17
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑘 ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑛 · |
20 |
|
nfcv |
⊢ Ⅎ 𝑛 ( cos ‘ ( 𝑘 · 𝑋 ) ) |
21 |
18 19 20
|
nfov |
⊢ Ⅎ 𝑛 ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) |
22 |
|
nfcv |
⊢ Ⅎ 𝑛 + |
23 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
24 |
13 23
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐵 |
25 |
24 17
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐵 ‘ 𝑘 ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑛 ( sin ‘ ( 𝑘 · 𝑋 ) ) |
27 |
25 19 26
|
nfov |
⊢ Ⅎ 𝑛 ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) |
28 |
21 22 27
|
nfov |
⊢ Ⅎ 𝑛 ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑘 ) ) |
30 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 · 𝑋 ) = ( 𝑘 · 𝑋 ) ) |
31 |
30
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( cos ‘ ( 𝑛 · 𝑋 ) ) = ( cos ‘ ( 𝑘 · 𝑋 ) ) ) |
32 |
29 31
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐵 ‘ 𝑛 ) = ( 𝐵 ‘ 𝑘 ) ) |
34 |
30
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( sin ‘ ( 𝑛 · 𝑋 ) ) = ( sin ‘ ( 𝑘 · 𝑋 ) ) ) |
35 |
33 34
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) |
36 |
32 35
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
37 |
14 28 36
|
cbvmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 37
|
fourierdlem115 |
⊢ ( 𝜑 → ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) ⇝ ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ∧ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( ( 𝐿 + 𝑅 ) / 2 ) ) ) |
39 |
38
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( ( 𝐿 + 𝑅 ) / 2 ) ) |