Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
fourierdlem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
fourierdlem1.q |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
4 |
|
fourierdlem1.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝑀 ) ) |
5 |
|
fourierdlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
6 |
|
iccssxr |
⊢ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ℝ* |
7 |
6 5
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
8 |
|
iccssxr |
⊢ ( 𝐴 [,] 𝐵 ) ⊆ ℝ* |
9 |
|
elfzofz |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → 𝐼 ∈ ( 0 ... 𝑀 ) ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... 𝑀 ) ) |
11 |
3 10
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
12 |
8 11
|
sselid |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ) |
13 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝑄 ‘ 𝐼 ) ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ ( 𝑄 ‘ 𝐼 ) ) |
14 |
1 2 11 13
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ≤ ( 𝑄 ‘ 𝐼 ) ) |
15 |
|
fzofzp1 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
17 |
3 16
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
18 |
8 17
|
sselid |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
19 |
|
elicc4 |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( 𝑋 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ↔ ( ( 𝑄 ‘ 𝐼 ) ≤ 𝑋 ∧ 𝑋 ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
20 |
12 18 7 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ↔ ( ( 𝑄 ‘ 𝐼 ) ≤ 𝑋 ∧ 𝑋 ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
21 |
5 20
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) ≤ 𝑋 ∧ 𝑋 ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
22 |
21
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) ≤ 𝑋 ) |
23 |
1 12 7 14 22
|
xrletrd |
⊢ ( 𝜑 → 𝐴 ≤ 𝑋 ) |
24 |
|
iccleub |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑋 ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
25 |
12 18 5 24
|
syl3anc |
⊢ ( 𝜑 → 𝑋 ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
26 |
|
elicc4 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≤ 𝐵 ) ) ) |
27 |
1 2 18 26
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≤ 𝐵 ) ) ) |
28 |
17 27
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≤ 𝐵 ) ) |
29 |
28
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≤ 𝐵 ) |
30 |
7 18 2 25 29
|
xrletrd |
⊢ ( 𝜑 → 𝑋 ≤ 𝐵 ) |
31 |
|
elicc1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) |
32 |
1 2 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) |
33 |
7 23 30 32
|
mpbir3and |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) |