Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem10.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
fourierdlem10.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
fourierdlem10.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
fourierdlem10.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
fourierdlem10.5 |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
6 |
|
fourierdlem10.6 |
⊢ ( 𝜑 → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
8 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐶 ∈ ℝ* ) |
10 |
4
|
rexrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐷 ∈ ℝ* ) |
12 |
3 1
|
readdcld |
⊢ ( 𝜑 → ( 𝐶 + 𝐴 ) ∈ ℝ ) |
13 |
12
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐴 ) / 2 ) ∈ ℝ ) |
14 |
3 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
15 |
14
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) / 2 ) ∈ ℝ ) |
16 |
13 15
|
ifcld |
⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → 𝐶 < 𝐴 ) |
19 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → 𝐶 ∈ ℝ ) |
20 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → 𝐴 ∈ ℝ ) |
21 |
|
avglt1 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐶 < 𝐴 ↔ 𝐶 < ( ( 𝐶 + 𝐴 ) / 2 ) ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → ( 𝐶 < 𝐴 ↔ 𝐶 < ( ( 𝐶 + 𝐴 ) / 2 ) ) ) |
23 |
18 22
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → 𝐶 < ( ( 𝐶 + 𝐴 ) / 2 ) ) |
24 |
|
iftrue |
⊢ ( 𝐴 ≤ 𝐷 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐴 ) / 2 ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐴 ) / 2 ) ) |
26 |
23 25
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → 𝐶 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
27 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐶 < 𝐷 ) |
28 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐶 ∈ ℝ ) |
29 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐷 ∈ ℝ ) |
30 |
|
avglt1 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 < 𝐷 ↔ 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
31 |
28 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( 𝐶 < 𝐷 ↔ 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
32 |
27 31
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) |
33 |
|
iffalse |
⊢ ( ¬ 𝐴 ≤ 𝐷 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐷 ) / 2 ) ) |
34 |
33
|
eqcomd |
⊢ ( ¬ 𝐴 ≤ 𝐷 → ( ( 𝐶 + 𝐷 ) / 2 ) = if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( ( 𝐶 + 𝐷 ) / 2 ) = if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
36 |
32 35
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐶 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
37 |
36
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐶 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
38 |
26 37
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐶 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
39 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐴 ) / 2 ) ) |
40 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → ( 𝐶 + 𝐴 ) ∈ ℝ ) |
41 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
42 |
|
2rp |
⊢ 2 ∈ ℝ+ |
43 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → 2 ∈ ℝ+ ) |
44 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → 𝐴 ∈ ℝ ) |
45 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → 𝐷 ∈ ℝ ) |
46 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → 𝐶 ∈ ℝ ) |
47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → 𝐴 ≤ 𝐷 ) |
48 |
44 45 46 47
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → ( 𝐶 + 𝐴 ) ≤ ( 𝐶 + 𝐷 ) ) |
49 |
40 41 43 48
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → ( ( 𝐶 + 𝐴 ) / 2 ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
50 |
39 49
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
51 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐷 ) / 2 ) ) |
52 |
15
|
leidd |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) / 2 ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( ( 𝐶 + 𝐷 ) / 2 ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
54 |
51 53
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
55 |
50 54
|
pm2.61dan |
⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
56 |
|
avglt2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 < 𝐷 ↔ ( ( 𝐶 + 𝐷 ) / 2 ) < 𝐷 ) ) |
57 |
3 4 56
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 < 𝐷 ↔ ( ( 𝐶 + 𝐷 ) / 2 ) < 𝐷 ) ) |
58 |
5 57
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) / 2 ) < 𝐷 ) |
59 |
16 15 4 55 58
|
lelttrd |
⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
61 |
9 11 17 38 60
|
eliood |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐶 (,) 𝐷 ) ) |
62 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐴 ∈ ℝ ) |
63 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ( ( 𝐶 + 𝐴 ) / 2 ) ∈ ℝ ) |
64 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
65 |
64 39
|
eqled |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐴 ) / 2 ) ) |
66 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
67 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( ( 𝐶 + 𝐴 ) / 2 ) ∈ ℝ ) |
68 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ¬ 𝐴 ≤ 𝐷 ) |
69 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐴 ∈ ℝ ) |
70 |
29 69
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( 𝐷 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐷 ) ) |
71 |
68 70
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐷 < 𝐴 ) |
72 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
73 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → ( 𝐶 + 𝐴 ) ∈ ℝ ) |
74 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → 2 ∈ ℝ+ ) |
75 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → 𝐷 ∈ ℝ ) |
76 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → 𝐴 ∈ ℝ ) |
77 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → 𝐶 ∈ ℝ ) |
78 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → 𝐷 < 𝐴 ) |
79 |
75 76 77 78
|
ltadd2dd |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → ( 𝐶 + 𝐷 ) < ( 𝐶 + 𝐴 ) ) |
80 |
72 73 74 79
|
ltdiv1dd |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → ( ( 𝐶 + 𝐷 ) / 2 ) < ( ( 𝐶 + 𝐴 ) / 2 ) ) |
81 |
71 80
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( ( 𝐶 + 𝐷 ) / 2 ) < ( ( 𝐶 + 𝐴 ) / 2 ) ) |
82 |
51 81
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < ( ( 𝐶 + 𝐴 ) / 2 ) ) |
83 |
66 67 82
|
ltled |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐴 ) / 2 ) ) |
84 |
65 83
|
pm2.61dan |
⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐴 ) / 2 ) ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐴 ) / 2 ) ) |
86 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐶 < 𝐴 ) |
87 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐶 ∈ ℝ ) |
88 |
|
avglt2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐶 < 𝐴 ↔ ( ( 𝐶 + 𝐴 ) / 2 ) < 𝐴 ) ) |
89 |
87 62 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ( 𝐶 < 𝐴 ↔ ( ( 𝐶 + 𝐴 ) / 2 ) < 𝐴 ) ) |
90 |
86 89
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ( ( 𝐶 + 𝐴 ) / 2 ) < 𝐴 ) |
91 |
17 63 62 85 90
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐴 ) |
92 |
17 62 91
|
ltnsymd |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ¬ 𝐴 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
93 |
92
|
intn3an2d |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ¬ ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) |
94 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐴 ∈ ℝ* ) |
96 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐵 ∈ ℝ* ) |
98 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ↔ ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) ) |
99 |
95 97 98
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ↔ ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) ) |
100 |
93 99
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ¬ if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
101 |
|
nelss |
⊢ ( ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐶 (,) 𝐷 ) ∧ ¬ if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
102 |
61 100 101
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ¬ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
103 |
7 102
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐶 < 𝐴 ) |
104 |
1 3 103
|
nltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
105 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
106 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐶 ∈ ℝ* ) |
107 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐷 ∈ ℝ* ) |
108 |
2 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + 𝐷 ) ∈ ℝ ) |
109 |
108
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐷 ) / 2 ) ∈ ℝ ) |
110 |
109 15
|
ifcld |
⊢ ( 𝜑 → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
112 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 ∈ ℝ ) |
113 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) ∈ ℝ ) |
114 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
115 |
3 4 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 < 𝐷 ↔ 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
116 |
5 115
|
mpbid |
⊢ ( 𝜑 → 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) |
117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) |
118 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
119 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( 𝐵 + 𝐷 ) ∈ ℝ ) |
120 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 2 ∈ ℝ+ ) |
121 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
122 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐷 ∈ ℝ ) |
123 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 ≤ 𝐵 ) |
124 |
112 121 122 123
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( 𝐶 + 𝐷 ) ≤ ( 𝐵 + 𝐷 ) ) |
125 |
118 119 120 124
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) ≤ ( ( 𝐵 + 𝐷 ) / 2 ) ) |
126 |
|
iftrue |
⊢ ( 𝐶 ≤ 𝐵 → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐵 + 𝐷 ) / 2 ) ) |
127 |
126
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐵 + 𝐷 ) / 2 ) ) |
128 |
125 127
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) ≤ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
129 |
112 113 114 117 128
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
130 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) |
131 |
|
iffalse |
⊢ ( ¬ 𝐶 ≤ 𝐵 → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐷 ) / 2 ) ) |
132 |
131
|
eqcomd |
⊢ ( ¬ 𝐶 ≤ 𝐵 → ( ( 𝐶 + 𝐷 ) / 2 ) = if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) = if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
134 |
130 133
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐶 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
135 |
129 134
|
pm2.61dan |
⊢ ( 𝜑 → 𝐶 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐶 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
137 |
126
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐵 + 𝐷 ) / 2 ) ) |
138 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 < 𝐷 ) |
139 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 ∈ ℝ ) |
140 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐷 ∈ ℝ ) |
141 |
|
avglt2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐵 < 𝐷 ↔ ( ( 𝐵 + 𝐷 ) / 2 ) < 𝐷 ) ) |
142 |
139 140 141
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( 𝐵 < 𝐷 ↔ ( ( 𝐵 + 𝐷 ) / 2 ) < 𝐷 ) ) |
143 |
138 142
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( ( 𝐵 + 𝐷 ) / 2 ) < 𝐷 ) |
144 |
143
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝐵 + 𝐷 ) / 2 ) < 𝐷 ) |
145 |
137 144
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
146 |
131
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐷 ) / 2 ) ) |
147 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) < 𝐷 ) |
148 |
146 147
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
149 |
148
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ ¬ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
150 |
145 149
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
151 |
106 107 111 136 150
|
eliood |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐶 (,) 𝐷 ) ) |
152 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( ( 𝐵 + 𝐷 ) / 2 ) ∈ ℝ ) |
153 |
|
avglt1 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐵 < 𝐷 ↔ 𝐵 < ( ( 𝐵 + 𝐷 ) / 2 ) ) ) |
154 |
139 140 153
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( 𝐵 < 𝐷 ↔ 𝐵 < ( ( 𝐵 + 𝐷 ) / 2 ) ) ) |
155 |
138 154
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 < ( ( 𝐵 + 𝐷 ) / 2 ) ) |
156 |
139 152 155
|
ltled |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 ≤ ( ( 𝐵 + 𝐷 ) / 2 ) ) |
157 |
156
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ 𝐶 ≤ 𝐵 ) → 𝐵 ≤ ( ( 𝐵 + 𝐷 ) / 2 ) ) |
158 |
157 137
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ 𝐶 ≤ 𝐵 ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
159 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
160 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) ∈ ℝ ) |
161 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐶 ∈ ℝ ) |
162 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → ¬ 𝐶 ≤ 𝐵 ) |
163 |
159 161
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → ( 𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵 ) ) |
164 |
162 163
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 < 𝐶 ) |
165 |
159 161 160 164 130
|
lttrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 < ( ( 𝐶 + 𝐷 ) / 2 ) ) |
166 |
159 160 165
|
ltled |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
167 |
166 133
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
168 |
167
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
169 |
158 168
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
170 |
139 111 169
|
lensymd |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ¬ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) |
171 |
170
|
intn3an3d |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ¬ ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) |
172 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐴 ∈ ℝ* ) |
173 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 ∈ ℝ* ) |
174 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ↔ ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) ) |
175 |
172 173 174
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ↔ ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) ) |
176 |
171 175
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ¬ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
177 |
|
nelss |
⊢ ( ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐶 (,) 𝐷 ) ∧ ¬ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
178 |
151 176 177
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ¬ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
179 |
105 178
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐵 < 𝐷 ) |
180 |
4 2 179
|
nltled |
⊢ ( 𝜑 → 𝐷 ≤ 𝐵 ) |
181 |
104 180
|
jca |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) |