| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem10.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | fourierdlem10.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fourierdlem10.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 4 |  | fourierdlem10.4 | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 5 |  | fourierdlem10.5 | ⊢ ( 𝜑  →  𝐶  <  𝐷 ) | 
						
							| 6 |  | fourierdlem10.6 | ⊢ ( 𝜑  →  ( 𝐶 (,) 𝐷 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  ( 𝐶 (,) 𝐷 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 8 | 3 | rexrd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  𝐶  ∈  ℝ* ) | 
						
							| 10 | 4 | rexrd | ⊢ ( 𝜑  →  𝐷  ∈  ℝ* ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  𝐷  ∈  ℝ* ) | 
						
							| 12 | 3 1 | readdcld | ⊢ ( 𝜑  →  ( 𝐶  +  𝐴 )  ∈  ℝ ) | 
						
							| 13 | 12 | rehalfcld | ⊢ ( 𝜑  →  ( ( 𝐶  +  𝐴 )  /  2 )  ∈  ℝ ) | 
						
							| 14 | 3 4 | readdcld | ⊢ ( 𝜑  →  ( 𝐶  +  𝐷 )  ∈  ℝ ) | 
						
							| 15 | 14 | rehalfcld | ⊢ ( 𝜑  →  ( ( 𝐶  +  𝐷 )  /  2 )  ∈  ℝ ) | 
						
							| 16 | 13 15 | ifcld | ⊢ ( 𝜑  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  𝐴 )  ∧  𝐴  ≤  𝐷 )  →  𝐶  <  𝐴 ) | 
						
							| 19 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  𝐴 )  ∧  𝐴  ≤  𝐷 )  →  𝐶  ∈  ℝ ) | 
						
							| 20 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  𝐴 )  ∧  𝐴  ≤  𝐷 )  →  𝐴  ∈  ℝ ) | 
						
							| 21 |  | avglt1 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐶  <  𝐴  ↔  𝐶  <  ( ( 𝐶  +  𝐴 )  /  2 ) ) ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐶  <  𝐴 )  ∧  𝐴  ≤  𝐷 )  →  ( 𝐶  <  𝐴  ↔  𝐶  <  ( ( 𝐶  +  𝐴 )  /  2 ) ) ) | 
						
							| 23 | 18 22 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝐶  <  𝐴 )  ∧  𝐴  ≤  𝐷 )  →  𝐶  <  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 24 |  | iftrue | ⊢ ( 𝐴  ≤  𝐷  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  =  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐶  <  𝐴 )  ∧  𝐴  ≤  𝐷 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  =  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 26 | 23 25 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝐶  <  𝐴 )  ∧  𝐴  ≤  𝐷 )  →  𝐶  <  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 27 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  𝐶  <  𝐷 ) | 
						
							| 28 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  𝐶  ∈  ℝ ) | 
						
							| 29 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  𝐷  ∈  ℝ ) | 
						
							| 30 |  | avglt1 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ )  →  ( 𝐶  <  𝐷  ↔  𝐶  <  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 31 | 28 29 30 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  ( 𝐶  <  𝐷  ↔  𝐶  <  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 32 | 27 31 | mpbid | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  𝐶  <  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 33 |  | iffalse | ⊢ ( ¬  𝐴  ≤  𝐷  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  =  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( ¬  𝐴  ≤  𝐷  →  ( ( 𝐶  +  𝐷 )  /  2 )  =  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  ( ( 𝐶  +  𝐷 )  /  2 )  =  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 36 | 32 35 | breqtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  𝐶  <  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 37 | 36 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  𝐴 )  ∧  ¬  𝐴  ≤  𝐷 )  →  𝐶  <  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 38 | 26 37 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  𝐶  <  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 39 | 24 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  =  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 40 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  ( 𝐶  +  𝐴 )  ∈  ℝ ) | 
						
							| 41 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  ( 𝐶  +  𝐷 )  ∈  ℝ ) | 
						
							| 42 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 43 | 42 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  2  ∈  ℝ+ ) | 
						
							| 44 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  𝐴  ∈  ℝ ) | 
						
							| 45 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  𝐷  ∈  ℝ ) | 
						
							| 46 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  𝐶  ∈  ℝ ) | 
						
							| 47 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  𝐴  ≤  𝐷 ) | 
						
							| 48 | 44 45 46 47 | leadd2dd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  ( 𝐶  +  𝐴 )  ≤  ( 𝐶  +  𝐷 ) ) | 
						
							| 49 | 40 41 43 48 | lediv1dd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  ( ( 𝐶  +  𝐴 )  /  2 )  ≤  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 50 | 39 49 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ≤  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 51 | 33 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  =  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 52 | 15 | leidd | ⊢ ( 𝜑  →  ( ( 𝐶  +  𝐷 )  /  2 )  ≤  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  ( ( 𝐶  +  𝐷 )  /  2 )  ≤  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 54 | 51 53 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ≤  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 55 | 50 54 | pm2.61dan | ⊢ ( 𝜑  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ≤  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 56 |  | avglt2 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ )  →  ( 𝐶  <  𝐷  ↔  ( ( 𝐶  +  𝐷 )  /  2 )  <  𝐷 ) ) | 
						
							| 57 | 3 4 56 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  <  𝐷  ↔  ( ( 𝐶  +  𝐷 )  /  2 )  <  𝐷 ) ) | 
						
							| 58 | 5 57 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐶  +  𝐷 )  /  2 )  <  𝐷 ) | 
						
							| 59 | 16 15 4 55 58 | lelttrd | ⊢ ( 𝜑  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐷 ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐷 ) | 
						
							| 61 | 9 11 17 38 60 | eliood | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐶 (,) 𝐷 ) ) | 
						
							| 62 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 63 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  ( ( 𝐶  +  𝐴 )  /  2 )  ∈  ℝ ) | 
						
							| 64 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ ) | 
						
							| 65 | 64 39 | eqled | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐷 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ≤  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 66 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ ) | 
						
							| 67 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  ( ( 𝐶  +  𝐴 )  /  2 )  ∈  ℝ ) | 
						
							| 68 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  ¬  𝐴  ≤  𝐷 ) | 
						
							| 69 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  𝐴  ∈  ℝ ) | 
						
							| 70 | 29 69 | ltnled | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  ( 𝐷  <  𝐴  ↔  ¬  𝐴  ≤  𝐷 ) ) | 
						
							| 71 | 68 70 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  𝐷  <  𝐴 ) | 
						
							| 72 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  <  𝐴 )  →  ( 𝐶  +  𝐷 )  ∈  ℝ ) | 
						
							| 73 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  <  𝐴 )  →  ( 𝐶  +  𝐴 )  ∈  ℝ ) | 
						
							| 74 | 42 | a1i | ⊢ ( ( 𝜑  ∧  𝐷  <  𝐴 )  →  2  ∈  ℝ+ ) | 
						
							| 75 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  <  𝐴 )  →  𝐷  ∈  ℝ ) | 
						
							| 76 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 77 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  <  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 78 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐷  <  𝐴 )  →  𝐷  <  𝐴 ) | 
						
							| 79 | 75 76 77 78 | ltadd2dd | ⊢ ( ( 𝜑  ∧  𝐷  <  𝐴 )  →  ( 𝐶  +  𝐷 )  <  ( 𝐶  +  𝐴 ) ) | 
						
							| 80 | 72 73 74 79 | ltdiv1dd | ⊢ ( ( 𝜑  ∧  𝐷  <  𝐴 )  →  ( ( 𝐶  +  𝐷 )  /  2 )  <  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 81 | 71 80 | syldan | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  ( ( 𝐶  +  𝐷 )  /  2 )  <  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 82 | 51 81 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 83 | 66 67 82 | ltled | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐷 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ≤  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 84 | 65 83 | pm2.61dan | ⊢ ( 𝜑  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ≤  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ≤  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 86 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  𝐶  <  𝐴 ) | 
						
							| 87 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 88 |  | avglt2 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐶  <  𝐴  ↔  ( ( 𝐶  +  𝐴 )  /  2 )  <  𝐴 ) ) | 
						
							| 89 | 87 62 88 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  ( 𝐶  <  𝐴  ↔  ( ( 𝐶  +  𝐴 )  /  2 )  <  𝐴 ) ) | 
						
							| 90 | 86 89 | mpbid | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  ( ( 𝐶  +  𝐴 )  /  2 )  <  𝐴 ) | 
						
							| 91 | 17 63 62 85 90 | lelttrd | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐴 ) | 
						
							| 92 | 17 62 91 | ltnsymd | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  ¬  𝐴  <  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 93 | 92 | intn3an2d | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  ¬  ( if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ  ∧  𝐴  <  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∧  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐵 ) ) | 
						
							| 94 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  𝐴  ∈  ℝ* ) | 
						
							| 96 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 98 |  | elioo2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ  ∧  𝐴  <  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∧  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐵 ) ) ) | 
						
							| 99 | 95 97 98 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  ( if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ  ∧  𝐴  <  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∧  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐵 ) ) ) | 
						
							| 100 | 93 99 | mtbird | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  ¬  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 101 |  | nelss | ⊢ ( ( if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐶 (,) 𝐷 )  ∧  ¬  if ( 𝐴  ≤  𝐷 ,  ( ( 𝐶  +  𝐴 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐴 (,) 𝐵 ) )  →  ¬  ( 𝐶 (,) 𝐷 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 102 | 61 100 101 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐶  <  𝐴 )  →  ¬  ( 𝐶 (,) 𝐷 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 103 | 7 102 | pm2.65da | ⊢ ( 𝜑  →  ¬  𝐶  <  𝐴 ) | 
						
							| 104 | 1 3 103 | nltled | ⊢ ( 𝜑  →  𝐴  ≤  𝐶 ) | 
						
							| 105 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  ( 𝐶 (,) 𝐷 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 106 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  𝐶  ∈  ℝ* ) | 
						
							| 107 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  𝐷  ∈  ℝ* ) | 
						
							| 108 | 2 4 | readdcld | ⊢ ( 𝜑  →  ( 𝐵  +  𝐷 )  ∈  ℝ ) | 
						
							| 109 | 108 | rehalfcld | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝐷 )  /  2 )  ∈  ℝ ) | 
						
							| 110 | 109 15 | ifcld | ⊢ ( 𝜑  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ ) | 
						
							| 112 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  𝐶  ∈  ℝ ) | 
						
							| 113 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  ( ( 𝐶  +  𝐷 )  /  2 )  ∈  ℝ ) | 
						
							| 114 | 110 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ ) | 
						
							| 115 | 3 4 30 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  <  𝐷  ↔  𝐶  <  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 116 | 5 115 | mpbid | ⊢ ( 𝜑  →  𝐶  <  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  𝐶  <  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 118 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  ( 𝐶  +  𝐷 )  ∈  ℝ ) | 
						
							| 119 | 108 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  ( 𝐵  +  𝐷 )  ∈  ℝ ) | 
						
							| 120 | 42 | a1i | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  2  ∈  ℝ+ ) | 
						
							| 121 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 122 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  𝐷  ∈  ℝ ) | 
						
							| 123 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  𝐶  ≤  𝐵 ) | 
						
							| 124 | 112 121 122 123 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  ( 𝐶  +  𝐷 )  ≤  ( 𝐵  +  𝐷 ) ) | 
						
							| 125 | 118 119 120 124 | lediv1dd | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  ( ( 𝐶  +  𝐷 )  /  2 )  ≤  ( ( 𝐵  +  𝐷 )  /  2 ) ) | 
						
							| 126 |  | iftrue | ⊢ ( 𝐶  ≤  𝐵  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  =  ( ( 𝐵  +  𝐷 )  /  2 ) ) | 
						
							| 127 | 126 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  =  ( ( 𝐵  +  𝐷 )  /  2 ) ) | 
						
							| 128 | 125 127 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  ( ( 𝐶  +  𝐷 )  /  2 )  ≤  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 129 | 112 113 114 117 128 | ltletrd | ⊢ ( ( 𝜑  ∧  𝐶  ≤  𝐵 )  →  𝐶  <  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 130 | 116 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  𝐶  <  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 131 |  | iffalse | ⊢ ( ¬  𝐶  ≤  𝐵  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  =  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 132 | 131 | eqcomd | ⊢ ( ¬  𝐶  ≤  𝐵  →  ( ( 𝐶  +  𝐷 )  /  2 )  =  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 133 | 132 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  ( ( 𝐶  +  𝐷 )  /  2 )  =  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 134 | 130 133 | breqtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  𝐶  <  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 135 | 129 134 | pm2.61dan | ⊢ ( 𝜑  →  𝐶  <  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  𝐶  <  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 137 | 126 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐵  <  𝐷 )  ∧  𝐶  ≤  𝐵 )  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  =  ( ( 𝐵  +  𝐷 )  /  2 ) ) | 
						
							| 138 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  𝐵  <  𝐷 ) | 
						
							| 139 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  𝐵  ∈  ℝ ) | 
						
							| 140 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  𝐷  ∈  ℝ ) | 
						
							| 141 |  | avglt2 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐷  ∈  ℝ )  →  ( 𝐵  <  𝐷  ↔  ( ( 𝐵  +  𝐷 )  /  2 )  <  𝐷 ) ) | 
						
							| 142 | 139 140 141 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  ( 𝐵  <  𝐷  ↔  ( ( 𝐵  +  𝐷 )  /  2 )  <  𝐷 ) ) | 
						
							| 143 | 138 142 | mpbid | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  ( ( 𝐵  +  𝐷 )  /  2 )  <  𝐷 ) | 
						
							| 144 | 143 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐵  <  𝐷 )  ∧  𝐶  ≤  𝐵 )  →  ( ( 𝐵  +  𝐷 )  /  2 )  <  𝐷 ) | 
						
							| 145 | 137 144 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝐵  <  𝐷 )  ∧  𝐶  ≤  𝐵 )  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐷 ) | 
						
							| 146 | 131 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  =  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 147 | 58 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  ( ( 𝐶  +  𝐷 )  /  2 )  <  𝐷 ) | 
						
							| 148 | 146 147 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐷 ) | 
						
							| 149 | 148 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐵  <  𝐷 )  ∧  ¬  𝐶  ≤  𝐵 )  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐷 ) | 
						
							| 150 | 145 149 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐷 ) | 
						
							| 151 | 106 107 111 136 150 | eliood | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐶 (,) 𝐷 ) ) | 
						
							| 152 | 109 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  ( ( 𝐵  +  𝐷 )  /  2 )  ∈  ℝ ) | 
						
							| 153 |  | avglt1 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐷  ∈  ℝ )  →  ( 𝐵  <  𝐷  ↔  𝐵  <  ( ( 𝐵  +  𝐷 )  /  2 ) ) ) | 
						
							| 154 | 139 140 153 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  ( 𝐵  <  𝐷  ↔  𝐵  <  ( ( 𝐵  +  𝐷 )  /  2 ) ) ) | 
						
							| 155 | 138 154 | mpbid | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  𝐵  <  ( ( 𝐵  +  𝐷 )  /  2 ) ) | 
						
							| 156 | 139 152 155 | ltled | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  𝐵  ≤  ( ( 𝐵  +  𝐷 )  /  2 ) ) | 
						
							| 157 | 156 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐵  <  𝐷 )  ∧  𝐶  ≤  𝐵 )  →  𝐵  ≤  ( ( 𝐵  +  𝐷 )  /  2 ) ) | 
						
							| 158 | 157 137 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝐵  <  𝐷 )  ∧  𝐶  ≤  𝐵 )  →  𝐵  ≤  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 159 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 160 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  ( ( 𝐶  +  𝐷 )  /  2 )  ∈  ℝ ) | 
						
							| 161 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  𝐶  ∈  ℝ ) | 
						
							| 162 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  ¬  𝐶  ≤  𝐵 ) | 
						
							| 163 | 159 161 | ltnled | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  ( 𝐵  <  𝐶  ↔  ¬  𝐶  ≤  𝐵 ) ) | 
						
							| 164 | 162 163 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  𝐵  <  𝐶 ) | 
						
							| 165 | 159 161 160 164 130 | lttrd | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  𝐵  <  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 166 | 159 160 165 | ltled | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  𝐵  ≤  ( ( 𝐶  +  𝐷 )  /  2 ) ) | 
						
							| 167 | 166 133 | breqtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ≤  𝐵 )  →  𝐵  ≤  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 168 | 167 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐵  <  𝐷 )  ∧  ¬  𝐶  ≤  𝐵 )  →  𝐵  ≤  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 169 | 158 168 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  𝐵  ≤  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) ) ) | 
						
							| 170 | 139 111 169 | lensymd | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  ¬  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐵 ) | 
						
							| 171 | 170 | intn3an3d | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  ¬  ( if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ  ∧  𝐴  <  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∧  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐵 ) ) | 
						
							| 172 | 94 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  𝐴  ∈  ℝ* ) | 
						
							| 173 | 96 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  𝐵  ∈  ℝ* ) | 
						
							| 174 |  | elioo2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ  ∧  𝐴  <  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∧  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐵 ) ) ) | 
						
							| 175 | 172 173 174 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  ( if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ℝ  ∧  𝐴  <  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∧  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  <  𝐵 ) ) ) | 
						
							| 176 | 171 175 | mtbird | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  ¬  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 177 |  | nelss | ⊢ ( ( if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐶 (,) 𝐷 )  ∧  ¬  if ( 𝐶  ≤  𝐵 ,  ( ( 𝐵  +  𝐷 )  /  2 ) ,  ( ( 𝐶  +  𝐷 )  /  2 ) )  ∈  ( 𝐴 (,) 𝐵 ) )  →  ¬  ( 𝐶 (,) 𝐷 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 178 | 151 176 177 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐷 )  →  ¬  ( 𝐶 (,) 𝐷 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 179 | 105 178 | pm2.65da | ⊢ ( 𝜑  →  ¬  𝐵  <  𝐷 ) | 
						
							| 180 | 4 2 179 | nltled | ⊢ ( 𝜑  →  𝐷  ≤  𝐵 ) | 
						
							| 181 | 104 180 | jca | ⊢ ( 𝜑  →  ( 𝐴  ≤  𝐶  ∧  𝐷  ≤  𝐵 ) ) |