Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem102.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem102.t |
⊢ 𝑇 = ( 2 · π ) |
3 |
|
fourierdlem102.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
4 |
|
fourierdlem102.g |
⊢ 𝐺 = ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) |
5 |
|
fourierdlem102.dmdv |
⊢ ( 𝜑 → ( ( - π (,) π ) ∖ dom 𝐺 ) ∈ Fin ) |
6 |
|
fourierdlem102.gcn |
⊢ ( 𝜑 → 𝐺 ∈ ( dom 𝐺 –cn→ ℂ ) ) |
7 |
|
fourierdlem102.rlim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
8 |
|
fourierdlem102.llim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
9 |
|
fourierdlem102.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
10 |
|
fourierdlem102.p |
⊢ 𝑃 = ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
11 |
|
fourierdlem102.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
12 |
|
fourierdlem102.h |
⊢ 𝐻 = ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) |
13 |
|
fourierdlem102.m |
⊢ 𝑀 = ( ( ♯ ‘ 𝐻 ) − 1 ) |
14 |
|
fourierdlem102.q |
⊢ 𝑄 = ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
15 |
|
2z |
⊢ 2 ∈ ℤ |
16 |
15
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
17 |
|
tpfi |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ Fin |
18 |
17
|
a1i |
⊢ ( 𝜑 → { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ Fin ) |
19 |
|
pire |
⊢ π ∈ ℝ |
20 |
19
|
renegcli |
⊢ - π ∈ ℝ |
21 |
20
|
rexri |
⊢ - π ∈ ℝ* |
22 |
19
|
rexri |
⊢ π ∈ ℝ* |
23 |
|
negpilt0 |
⊢ - π < 0 |
24 |
|
pipos |
⊢ 0 < π |
25 |
|
0re |
⊢ 0 ∈ ℝ |
26 |
20 25 19
|
lttri |
⊢ ( ( - π < 0 ∧ 0 < π ) → - π < π ) |
27 |
23 24 26
|
mp2an |
⊢ - π < π |
28 |
20 19 27
|
ltleii |
⊢ - π ≤ π |
29 |
|
prunioo |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π ≤ π ) → ( ( - π (,) π ) ∪ { - π , π } ) = ( - π [,] π ) ) |
30 |
21 22 28 29
|
mp3an |
⊢ ( ( - π (,) π ) ∪ { - π , π } ) = ( - π [,] π ) |
31 |
30
|
difeq1i |
⊢ ( ( ( - π (,) π ) ∪ { - π , π } ) ∖ dom 𝐺 ) = ( ( - π [,] π ) ∖ dom 𝐺 ) |
32 |
|
difundir |
⊢ ( ( ( - π (,) π ) ∪ { - π , π } ) ∖ dom 𝐺 ) = ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) |
33 |
31 32
|
eqtr3i |
⊢ ( ( - π [,] π ) ∖ dom 𝐺 ) = ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) |
34 |
|
prfi |
⊢ { - π , π } ∈ Fin |
35 |
|
diffi |
⊢ ( { - π , π } ∈ Fin → ( { - π , π } ∖ dom 𝐺 ) ∈ Fin ) |
36 |
34 35
|
mp1i |
⊢ ( 𝜑 → ( { - π , π } ∖ dom 𝐺 ) ∈ Fin ) |
37 |
|
unfi |
⊢ ( ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∈ Fin ∧ ( { - π , π } ∖ dom 𝐺 ) ∈ Fin ) → ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) ∈ Fin ) |
38 |
5 36 37
|
syl2anc |
⊢ ( 𝜑 → ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) ∈ Fin ) |
39 |
33 38
|
eqeltrid |
⊢ ( 𝜑 → ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ Fin ) |
40 |
|
unfi |
⊢ ( ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ Fin ∧ ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ Fin ) → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ∈ Fin ) |
41 |
18 39 40
|
syl2anc |
⊢ ( 𝜑 → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ∈ Fin ) |
42 |
12 41
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ Fin ) |
43 |
|
hashcl |
⊢ ( 𝐻 ∈ Fin → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
44 |
42 43
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
45 |
44
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℤ ) |
46 |
20 27
|
ltneii |
⊢ - π ≠ π |
47 |
|
hashprg |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π ≠ π ↔ ( ♯ ‘ { - π , π } ) = 2 ) ) |
48 |
20 19 47
|
mp2an |
⊢ ( - π ≠ π ↔ ( ♯ ‘ { - π , π } ) = 2 ) |
49 |
46 48
|
mpbi |
⊢ ( ♯ ‘ { - π , π } ) = 2 |
50 |
17
|
elexi |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ V |
51 |
|
ovex |
⊢ ( - π [,] π ) ∈ V |
52 |
|
difexg |
⊢ ( ( - π [,] π ) ∈ V → ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ V ) |
53 |
51 52
|
ax-mp |
⊢ ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ V |
54 |
50 53
|
unex |
⊢ ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ∈ V |
55 |
12 54
|
eqeltri |
⊢ 𝐻 ∈ V |
56 |
|
negex |
⊢ - π ∈ V |
57 |
56
|
tpid1 |
⊢ - π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } |
58 |
19
|
elexi |
⊢ π ∈ V |
59 |
58
|
tpid2 |
⊢ π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } |
60 |
|
prssi |
⊢ ( ( - π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } ∧ π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } ) → { - π , π } ⊆ { - π , π , ( 𝐸 ‘ 𝑋 ) } ) |
61 |
57 59 60
|
mp2an |
⊢ { - π , π } ⊆ { - π , π , ( 𝐸 ‘ 𝑋 ) } |
62 |
|
ssun1 |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) |
63 |
62 12
|
sseqtrri |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ 𝐻 |
64 |
61 63
|
sstri |
⊢ { - π , π } ⊆ 𝐻 |
65 |
|
hashss |
⊢ ( ( 𝐻 ∈ V ∧ { - π , π } ⊆ 𝐻 ) → ( ♯ ‘ { - π , π } ) ≤ ( ♯ ‘ 𝐻 ) ) |
66 |
55 64 65
|
mp2an |
⊢ ( ♯ ‘ { - π , π } ) ≤ ( ♯ ‘ 𝐻 ) |
67 |
66
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ { - π , π } ) ≤ ( ♯ ‘ 𝐻 ) ) |
68 |
49 67
|
eqbrtrrid |
⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝐻 ) ) |
69 |
|
eluz2 |
⊢ ( ( ♯ ‘ 𝐻 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ ( ♯ ‘ 𝐻 ) ∈ ℤ ∧ 2 ≤ ( ♯ ‘ 𝐻 ) ) ) |
70 |
16 45 68 69
|
syl3anbrc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ( ℤ≥ ‘ 2 ) ) |
71 |
|
uz2m1nn |
⊢ ( ( ♯ ‘ 𝐻 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( ♯ ‘ 𝐻 ) − 1 ) ∈ ℕ ) |
72 |
70 71
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) − 1 ) ∈ ℕ ) |
73 |
13 72
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
74 |
20
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
75 |
19
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
76 |
|
negpitopissre |
⊢ ( - π (,] π ) ⊆ ℝ |
77 |
27
|
a1i |
⊢ ( 𝜑 → - π < π ) |
78 |
|
picn |
⊢ π ∈ ℂ |
79 |
78
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
80 |
78 78
|
subnegi |
⊢ ( π − - π ) = ( π + π ) |
81 |
79 2 80
|
3eqtr4i |
⊢ 𝑇 = ( π − - π ) |
82 |
74 75 77 81 11
|
fourierdlem4 |
⊢ ( 𝜑 → 𝐸 : ℝ ⟶ ( - π (,] π ) ) |
83 |
82 9
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ( - π (,] π ) ) |
84 |
76 83
|
sselid |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) |
85 |
74 75 84
|
3jca |
⊢ ( 𝜑 → ( - π ∈ ℝ ∧ π ∈ ℝ ∧ ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) ) |
86 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑋 ) ∈ V |
87 |
56 58 86
|
tpss |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ∧ ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) ↔ { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ℝ ) |
88 |
85 87
|
sylib |
⊢ ( 𝜑 → { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ℝ ) |
89 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
90 |
20 19 89
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
91 |
|
ssdifss |
⊢ ( ( - π [,] π ) ⊆ ℝ → ( ( - π [,] π ) ∖ dom 𝐺 ) ⊆ ℝ ) |
92 |
90 91
|
mp1i |
⊢ ( 𝜑 → ( ( - π [,] π ) ∖ dom 𝐺 ) ⊆ ℝ ) |
93 |
88 92
|
unssd |
⊢ ( 𝜑 → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ⊆ ℝ ) |
94 |
12 93
|
eqsstrid |
⊢ ( 𝜑 → 𝐻 ⊆ ℝ ) |
95 |
42 94 14 13
|
fourierdlem36 |
⊢ ( 𝜑 → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
96 |
|
isof1o |
⊢ ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) → 𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻 ) |
97 |
|
f1of |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻 → 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) |
98 |
95 96 97
|
3syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) |
99 |
98 94
|
fssd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
100 |
|
reex |
⊢ ℝ ∈ V |
101 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
102 |
100 101
|
elmap |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
103 |
99 102
|
sylibr |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
104 |
|
fveq2 |
⊢ ( 0 = 𝑖 → ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ 𝑖 ) ) |
105 |
104
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 = 𝑖 ) → ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ 𝑖 ) ) |
106 |
99
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
107 |
106
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
108 |
107
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 = 𝑖 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
109 |
105 108
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 = 𝑖 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
110 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℤ ) |
111 |
110
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℝ ) |
112 |
111
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 𝑖 ∈ ℝ ) |
113 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 0 ≤ 𝑖 ) |
114 |
113
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 0 ≤ 𝑖 ) |
115 |
|
neqne |
⊢ ( ¬ 0 = 𝑖 → 0 ≠ 𝑖 ) |
116 |
115
|
necomd |
⊢ ( ¬ 0 = 𝑖 → 𝑖 ≠ 0 ) |
117 |
116
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 𝑖 ≠ 0 ) |
118 |
112 114 117
|
ne0gt0d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 0 < 𝑖 ) |
119 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
120 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
121 |
119 120
|
sseqtri |
⊢ ℕ ⊆ ( ℤ≥ ‘ 0 ) |
122 |
121 73
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
123 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
124 |
122 123
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
125 |
98 124
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ 𝐻 ) |
126 |
94 125
|
sseldd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
127 |
126
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
128 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
129 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → 0 < 𝑖 ) |
130 |
95
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
131 |
124
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 0 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ) |
132 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 0 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ) |
133 |
|
isorel |
⊢ ( ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ∧ ( 0 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ) → ( 0 < 𝑖 ↔ ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ 𝑖 ) ) ) |
134 |
130 132 133
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 0 < 𝑖 ↔ ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ 𝑖 ) ) ) |
135 |
129 134
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ 𝑖 ) ) |
136 |
127 128 135
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
137 |
118 136
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
138 |
109 137
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
139 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
140 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 𝑖 ) = - π ) |
141 |
139 140
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) ≤ - π ) |
142 |
74
|
rexrd |
⊢ ( 𝜑 → - π ∈ ℝ* ) |
143 |
75
|
rexrd |
⊢ ( 𝜑 → π ∈ ℝ* ) |
144 |
|
lbicc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π ≤ π ) → - π ∈ ( - π [,] π ) ) |
145 |
21 22 28 144
|
mp3an |
⊢ - π ∈ ( - π [,] π ) |
146 |
145
|
a1i |
⊢ ( 𝜑 → - π ∈ ( - π [,] π ) ) |
147 |
|
ubicc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π ≤ π ) → π ∈ ( - π [,] π ) ) |
148 |
21 22 28 147
|
mp3an |
⊢ π ∈ ( - π [,] π ) |
149 |
148
|
a1i |
⊢ ( 𝜑 → π ∈ ( - π [,] π ) ) |
150 |
|
iocssicc |
⊢ ( - π (,] π ) ⊆ ( - π [,] π ) |
151 |
150 83
|
sselid |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ( - π [,] π ) ) |
152 |
|
tpssi |
⊢ ( ( - π ∈ ( - π [,] π ) ∧ π ∈ ( - π [,] π ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( - π [,] π ) ) → { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ( - π [,] π ) ) |
153 |
146 149 151 152
|
syl3anc |
⊢ ( 𝜑 → { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ( - π [,] π ) ) |
154 |
|
difssd |
⊢ ( 𝜑 → ( ( - π [,] π ) ∖ dom 𝐺 ) ⊆ ( - π [,] π ) ) |
155 |
153 154
|
unssd |
⊢ ( 𝜑 → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ⊆ ( - π [,] π ) ) |
156 |
12 155
|
eqsstrid |
⊢ ( 𝜑 → 𝐻 ⊆ ( - π [,] π ) ) |
157 |
156 125
|
sseldd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ( - π [,] π ) ) |
158 |
|
iccgelb |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ ( 𝑄 ‘ 0 ) ∈ ( - π [,] π ) ) → - π ≤ ( 𝑄 ‘ 0 ) ) |
159 |
142 143 157 158
|
syl3anc |
⊢ ( 𝜑 → - π ≤ ( 𝑄 ‘ 0 ) ) |
160 |
159
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → - π ≤ ( 𝑄 ‘ 0 ) ) |
161 |
126
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
162 |
20
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → - π ∈ ℝ ) |
163 |
161 162
|
letri3d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( ( 𝑄 ‘ 0 ) = - π ↔ ( ( 𝑄 ‘ 0 ) ≤ - π ∧ - π ≤ ( 𝑄 ‘ 0 ) ) ) ) |
164 |
141 160 163
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) = - π ) |
165 |
63 57
|
sselii |
⊢ - π ∈ 𝐻 |
166 |
|
f1ofo |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻 → 𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻 ) |
167 |
96 166
|
syl |
⊢ ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) → 𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻 ) |
168 |
|
forn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻 → ran 𝑄 = 𝐻 ) |
169 |
95 167 168
|
3syl |
⊢ ( 𝜑 → ran 𝑄 = 𝐻 ) |
170 |
165 169
|
eleqtrrid |
⊢ ( 𝜑 → - π ∈ ran 𝑄 ) |
171 |
|
ffn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 → 𝑄 Fn ( 0 ... 𝑀 ) ) |
172 |
|
fvelrnb |
⊢ ( 𝑄 Fn ( 0 ... 𝑀 ) → ( - π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = - π ) ) |
173 |
98 171 172
|
3syl |
⊢ ( 𝜑 → ( - π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = - π ) ) |
174 |
170 173
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = - π ) |
175 |
164 174
|
r19.29a |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = - π ) |
176 |
63 59
|
sselii |
⊢ π ∈ 𝐻 |
177 |
176 169
|
eleqtrrid |
⊢ ( 𝜑 → π ∈ ran 𝑄 ) |
178 |
|
fvelrnb |
⊢ ( 𝑄 Fn ( 0 ... 𝑀 ) → ( π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π ) ) |
179 |
98 171 178
|
3syl |
⊢ ( 𝜑 → ( π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π ) ) |
180 |
177 179
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π ) |
181 |
98 156
|
fssd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
182 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
183 |
122 182
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
184 |
181 183
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( - π [,] π ) ) |
185 |
|
iccleub |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ ( 𝑄 ‘ 𝑀 ) ∈ ( - π [,] π ) ) → ( 𝑄 ‘ 𝑀 ) ≤ π ) |
186 |
142 143 184 185
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ≤ π ) |
187 |
186
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑀 ) ≤ π ) |
188 |
|
id |
⊢ ( ( 𝑄 ‘ 𝑖 ) = π → ( 𝑄 ‘ 𝑖 ) = π ) |
189 |
188
|
eqcomd |
⊢ ( ( 𝑄 ‘ 𝑖 ) = π → π = ( 𝑄 ‘ 𝑖 ) ) |
190 |
189
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → π = ( 𝑄 ‘ 𝑖 ) ) |
191 |
107
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
192 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
193 |
192
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
194 |
191 193
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
195 |
111
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑖 ∈ ℝ ) |
196 |
|
elfzel2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℤ ) |
197 |
196
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℝ ) |
198 |
197
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑀 ∈ ℝ ) |
199 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ≤ 𝑀 ) |
200 |
199
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑖 ≤ 𝑀 ) |
201 |
|
neqne |
⊢ ( ¬ 𝑖 = 𝑀 → 𝑖 ≠ 𝑀 ) |
202 |
201
|
necomd |
⊢ ( ¬ 𝑖 = 𝑀 → 𝑀 ≠ 𝑖 ) |
203 |
202
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑀 ≠ 𝑖 ) |
204 |
195 198 200 203
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑖 < 𝑀 ) |
205 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
206 |
90 184
|
sselid |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
207 |
206
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
208 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → 𝑖 < 𝑀 ) |
209 |
95
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
210 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
211 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
212 |
210 211
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑀 ∈ ( 0 ... 𝑀 ) ) ) |
213 |
212
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑀 ∈ ( 0 ... 𝑀 ) ) ) |
214 |
|
isorel |
⊢ ( ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ∧ ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑀 ∈ ( 0 ... 𝑀 ) ) ) → ( 𝑖 < 𝑀 ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ 𝑀 ) ) ) |
215 |
209 213 214
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑖 < 𝑀 ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ 𝑀 ) ) ) |
216 |
208 215
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ 𝑀 ) ) |
217 |
205 207 216
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
218 |
204 217
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
219 |
194 218
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
220 |
219
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
221 |
190 220
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → π ≤ ( 𝑄 ‘ 𝑀 ) ) |
222 |
206
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
223 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → π ∈ ℝ ) |
224 |
222 223
|
letri3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( ( 𝑄 ‘ 𝑀 ) = π ↔ ( ( 𝑄 ‘ 𝑀 ) ≤ π ∧ π ≤ ( 𝑄 ‘ 𝑀 ) ) ) ) |
225 |
187 221 224
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑀 ) = π ) |
226 |
225
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π → ( 𝑄 ‘ 𝑀 ) = π ) ) |
227 |
180 226
|
mpd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = π ) |
228 |
|
elfzoelz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ℤ ) |
229 |
228
|
zred |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ℝ ) |
230 |
229
|
ltp1d |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 < ( 𝑖 + 1 ) ) |
231 |
230
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 < ( 𝑖 + 1 ) ) |
232 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
233 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
234 |
232 233
|
jca |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
235 |
|
isorel |
⊢ ( ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ∧ ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) → ( 𝑖 < ( 𝑖 + 1 ) ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
236 |
95 234 235
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 < ( 𝑖 + 1 ) ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
237 |
231 236
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
238 |
237
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
239 |
175 227 238
|
jca31 |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
240 |
10
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
241 |
73 240
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
242 |
103 239 241
|
mpbir2and |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
243 |
4
|
reseq1i |
⊢ ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
244 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ* ) |
245 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ* ) |
246 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
247 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
248 |
244 245 246 247
|
fourierdlem27 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π (,) π ) ) |
249 |
248
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
250 |
243 249
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
251 |
6 10 73 242 12 169
|
fourierdlem38 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
252 |
250 251
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
253 |
250
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
254 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐺 ∈ ( dom 𝐺 –cn→ ℂ ) ) |
255 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
256 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
257 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
258 |
257 96 97
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) |
259 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) |
260 |
257 167 168
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ran 𝑄 = 𝐻 ) |
261 |
254 255 256 257 258 247 237 248 259 12 260
|
fourierdlem46 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ∧ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) ) |
262 |
261
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ) |
263 |
253 262
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ) |
264 |
250
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
265 |
261
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) |
266 |
264 265
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) |
267 |
1 2 3 9 10 73 242 252 263 266
|
fourierdlem94 |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ≠ ∅ ∧ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ) |