| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem105.p | 
							⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem105.t | 
							⊢ 𝑇  =  ( 𝐵  −  𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem105.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem105.q | 
							⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem105.f | 
							⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 6 | 
							
								
							 | 
							fourierdlem105.6 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fourierdlem105.fcn | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fourierdlem105.r | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fourierdlem105.l | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							fourierdlem105.c | 
							⊢ ( 𝜑  →  𝐶  ∈  ℝ )  | 
						
						
							| 11 | 
							
								
							 | 
							fourierdlem105.d | 
							⊢ ( 𝜑  →  𝐷  ∈  ( 𝐶 (,) +∞ ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐶  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐷 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐶  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐷 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 )  =  ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  =  ( 𝑦  +  ( 𝑗  ·  𝑇 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							eleq1d | 
							⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							rexbidv | 
							⊢ ( 𝑤  =  𝑦  →  ( ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑗  =  𝑘  →  ( 𝑗  ·  𝑇 )  =  ( 𝑘  ·  𝑇 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq2d | 
							⊢ ( 𝑗  =  𝑘  →  ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  =  ( 𝑦  +  ( 𝑘  ·  𝑇 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							eleq1d | 
							⊢ ( 𝑗  =  𝑘  →  ( ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 )  | 
						
						
							| 21 | 
							
								16 20
							 | 
							bitrdi | 
							⊢ ( 𝑤  =  𝑦  →  ( ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							cbvrabv | 
							⊢ { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  | 
						
						
							| 23 | 
							
								22
							 | 
							uneq2i | 
							⊢ ( { 𝐶 ,  𝐷 }  ∪  { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  | 
						
						
							| 24 | 
							
								
							 | 
							isoeq1 | 
							⊢ ( 𝑔  =  𝑓  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							cbviotavw | 
							⊢ ( ℩ 𝑔 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) )  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑤  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							id | 
							⊢ ( 𝑤  =  𝑥  →  𝑤  =  𝑥 )  | 
						
						
							| 27 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑤  =  𝑥  →  ( 𝐵  −  𝑤 )  =  ( 𝐵  −  𝑥 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							oveq1d | 
							⊢ ( 𝑤  =  𝑥  →  ( ( 𝐵  −  𝑤 )  /  𝑇 )  =  ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							fveq2d | 
							⊢ ( 𝑤  =  𝑥  →  ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  =  ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq1d | 
							⊢ ( 𝑤  =  𝑥  →  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) )  | 
						
						
							| 31 | 
							
								26 30
							 | 
							oveq12d | 
							⊢ ( 𝑤  =  𝑥  →  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							cbvmptv | 
							⊢ ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑤  =  𝐵  ↔  𝑦  =  𝐵 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							id | 
							⊢ ( 𝑤  =  𝑦  →  𝑤  =  𝑦 )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							ifbieq2d | 
							⊢ ( 𝑤  =  𝑦  →  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 )  =  if ( 𝑦  =  𝐵 ,  𝐴 ,  𝑦 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							cbvmptv | 
							⊢ ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) )  =  ( 𝑦  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑦  =  𝐵 ,  𝐴 ,  𝑦 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑧  =  𝑥  →  ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 )  =  ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							fveq2d | 
							⊢ ( 𝑧  =  𝑥  →  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) )  =  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							breq2d | 
							⊢ ( 𝑧  =  𝑥  →  ( ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) )  ↔  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							rabbidv | 
							⊢ ( 𝑧  =  𝑥  →  { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) ) }  =  { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } )  | 
						
						
							| 41 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝑖 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							breq1d | 
							⊢ ( 𝑗  =  𝑖  →  ( ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) )  ↔  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							cbvrabv | 
							⊢ { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) }  =  { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) }  | 
						
						
							| 44 | 
							
								40 43
							 | 
							eqtrdi | 
							⊢ ( 𝑧  =  𝑥  →  { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) ) }  =  { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } )  | 
						
						
							| 45 | 
							
								44
							 | 
							supeq1d | 
							⊢ ( 𝑧  =  𝑥  →  sup ( { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) ) } ,  ℝ ,   <  )  =  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } ,  ℝ ,   <  ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							cbvmptv | 
							⊢ ( 𝑧  ∈  ℝ  ↦  sup ( { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) ) } ,  ℝ ,   <  ) )  =  ( 𝑥  ∈  ℝ  ↦  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } ,  ℝ ,   <  ) )  | 
						
						
							| 47 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 23 25 32 36 46
							 | 
							fourierdlem100 | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐶 [,] 𝐷 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  |