| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem106.f | 
							⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem106.t | 
							⊢ 𝑇  =  ( 2  ·  π )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem106.per | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem106.g | 
							⊢ 𝐺  =  ( ( ℝ  D  𝐹 )  ↾  ( - π (,) π ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem106.dmdv | 
							⊢ ( 𝜑  →  ( ( - π (,) π )  ∖  dom  𝐺 )  ∈  Fin )  | 
						
						
							| 6 | 
							
								
							 | 
							fourierdlem106.dvcn | 
							⊢ ( 𝜑  →  𝐺  ∈  ( dom  𝐺 –cn→ ℂ ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fourierdlem106.rlim | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( - π [,) π )  ∖  dom  𝐺 ) )  →  ( ( 𝐺  ↾  ( 𝑥 (,) +∞ ) )  limℂ  𝑥 )  ≠  ∅ )  | 
						
						
							| 8 | 
							
								
							 | 
							fourierdlem106.llim | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( - π (,] π )  ∖  dom  𝐺 ) )  →  ( ( 𝐺  ↾  ( -∞ (,) 𝑥 ) )  limℂ  𝑥 )  ≠  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							fourierdlem106.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ℝ )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℕ  ↦  { 𝑤  ∈  ( ℝ  ↑m  ( 0 ... 𝑘 ) )  ∣  ( ( ( 𝑤 ‘ 0 )  =  - π  ∧  ( 𝑤 ‘ 𝑘 )  =  π )  ∧  ∀ 𝑧  ∈  ( 0 ..^ 𝑘 ) ( 𝑤 ‘ 𝑧 )  <  ( 𝑤 ‘ ( 𝑧  +  1 ) ) ) } )  =  ( 𝑘  ∈  ℕ  ↦  { 𝑤  ∈  ( ℝ  ↑m  ( 0 ... 𝑘 ) )  ∣  ( ( ( 𝑤 ‘ 0 )  =  - π  ∧  ( 𝑤 ‘ 𝑘 )  =  π )  ∧  ∀ 𝑧  ∈  ( 0 ..^ 𝑘 ) ( 𝑤 ‘ 𝑧 )  <  ( 𝑤 ‘ ( 𝑧  +  1 ) ) ) } )  | 
						
						
							| 11 | 
							
								
							 | 
							id | 
							⊢ ( 𝑦  =  𝑥  →  𝑦  =  𝑥 )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  𝑥  →  ( π  −  𝑦 )  =  ( π  −  𝑥 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq1d | 
							⊢ ( 𝑦  =  𝑥  →  ( ( π  −  𝑦 )  /  𝑇 )  =  ( ( π  −  𝑥 )  /  𝑇 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							fveq2d | 
							⊢ ( 𝑦  =  𝑥  →  ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  =  ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq1d | 
							⊢ ( 𝑦  =  𝑥  →  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							oveq12d | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( 𝑥  +  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							cbvmptv | 
							⊢ ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) )  =  ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( ( ♯ ‘ ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) )  −  1 )  =  ( ( ♯ ‘ ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) )  −  1 )  | 
						
						
							| 20 | 
							
								
							 | 
							isoeq1 | 
							⊢ ( 𝑔  =  𝑓  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) )  −  1 ) ) ,  ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) )  −  1 ) ) ,  ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							cbviotavw | 
							⊢ ( ℩ 𝑔 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) )  −  1 ) ) ,  ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) ) )  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) )  −  1 ) ) ,  ( { - π ,  π ,  ( ( 𝑦  ∈  ℝ  ↦  ( 𝑦  +  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) ) )  | 
						
						
							| 22 | 
							
								1 2 3 4 5 6 7 8 9 10 17 18 19 21
							 | 
							fourierdlem102 | 
							⊢ ( 𝜑  →  ( ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  ≠  ∅  ∧  ( ( 𝐹  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 )  ≠  ∅ ) )  |