| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem107.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem107.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem107.t | 
							⊢ 𝑇  =  ( 𝐵  −  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem107.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ℝ+ )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem107.p | 
							⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  | 
						
						
							| 6 | 
							
								
							 | 
							fourierdlem107.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 7 | 
							
								
							 | 
							fourierdlem107.q | 
							⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fourierdlem107.f | 
							⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 9 | 
							
								
							 | 
							fourierdlem107.fper | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							fourierdlem107.fcn | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fourierdlem107.r | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fourierdlem107.l | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fourierdlem107.o | 
							⊢ 𝑂  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  | 
						
						
							| 14 | 
							
								
							 | 
							fourierdlem107.h | 
							⊢ 𝐻  =  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑦  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  | 
						
						
							| 15 | 
							
								
							 | 
							fourierdlem107.n | 
							⊢ 𝑁  =  ( ( ♯ ‘ 𝐻 )  −  1 )  | 
						
						
							| 16 | 
							
								
							 | 
							fourierdlem107.s | 
							⊢ 𝑆  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝐻 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							fourierdlem107.e | 
							⊢ 𝐸  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fourierdlem107.z | 
							⊢ 𝑍  =  ( 𝑦  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑦  =  𝐵 ,  𝐴 ,  𝑦 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fourierdlem107.i | 
							⊢ 𝐼  =  ( 𝑥  ∈  ℝ  ↦  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑍 ‘ ( 𝐸 ‘ 𝑥 ) ) } ,  ℝ ,   <  ) )  | 
						
						
							| 20 | 
							
								3
							 | 
							oveq2i | 
							⊢ ( ( 𝐴  −  𝑋 )  +  𝑇 )  =  ( ( 𝐴  −  𝑋 )  +  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 21 | 
							
								1
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℂ )  | 
						
						
							| 22 | 
							
								4
							 | 
							rpred | 
							⊢ ( 𝜑  →  𝑋  ∈  ℝ )  | 
						
						
							| 23 | 
							
								22
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝑋  ∈  ℂ )  | 
						
						
							| 24 | 
							
								2
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℂ )  | 
						
						
							| 25 | 
							
								21 23 24 21
							 | 
							subadd4b | 
							⊢ ( 𝜑  →  ( ( 𝐴  −  𝑋 )  +  ( 𝐵  −  𝐴 ) )  =  ( ( 𝐴  −  𝐴 )  +  ( 𝐵  −  𝑋 ) ) )  | 
						
						
							| 26 | 
							
								20 25
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  ( ( 𝐴  −  𝑋 )  +  𝑇 )  =  ( ( 𝐴  −  𝐴 )  +  ( 𝐵  −  𝑋 ) ) )  | 
						
						
							| 27 | 
							
								21
							 | 
							subidd | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐴 )  =  0 )  | 
						
						
							| 28 | 
							
								27
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( 𝐴  −  𝐴 )  +  ( 𝐵  −  𝑋 ) )  =  ( 0  +  ( 𝐵  −  𝑋 ) ) )  | 
						
						
							| 29 | 
							
								2 22
							 | 
							resubcld | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 30 | 
							
								29
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ℂ )  | 
						
						
							| 31 | 
							
								30
							 | 
							addlidd | 
							⊢ ( 𝜑  →  ( 0  +  ( 𝐵  −  𝑋 ) )  =  ( 𝐵  −  𝑋 ) )  | 
						
						
							| 32 | 
							
								26 28 31
							 | 
							3eqtrd | 
							⊢ ( 𝜑  →  ( ( 𝐴  −  𝑋 )  +  𝑇 )  =  ( 𝐵  −  𝑋 ) )  | 
						
						
							| 33 | 
							
								3
							 | 
							oveq2i | 
							⊢ ( 𝐴  +  𝑇 )  =  ( 𝐴  +  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 34 | 
							
								21 24
							 | 
							pncan3d | 
							⊢ ( 𝜑  →  ( 𝐴  +  ( 𝐵  −  𝐴 ) )  =  𝐵 )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  ( 𝐴  +  𝑇 )  =  𝐵 )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							oveq12d | 
							⊢ ( 𝜑  →  ( ( ( 𝐴  −  𝑋 )  +  𝑇 ) [,] ( 𝐴  +  𝑇 ) )  =  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  =  ( ( ( 𝐴  −  𝑋 )  +  𝑇 ) [,] ( 𝐴  +  𝑇 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							itgeq1d | 
							⊢ ( 𝜑  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( ( 𝐴  −  𝑋 )  +  𝑇 ) [,] ( 𝐴  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 39 | 
							
								1 22
							 | 
							resubcld | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 40 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  𝑗  →  ( 𝑝 ‘ 𝑖 )  =  ( 𝑝 ‘ 𝑗 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑖  =  𝑗  →  ( 𝑖  +  1 )  =  ( 𝑗  +  1 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							fveq2d | 
							⊢ ( 𝑖  =  𝑗  →  ( 𝑝 ‘ ( 𝑖  +  1 ) )  =  ( 𝑝 ‘ ( 𝑗  +  1 ) ) )  | 
						
						
							| 43 | 
							
								40 42
							 | 
							breq12d | 
							⊢ ( 𝑖  =  𝑗  →  ( ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							a1i | 
							⊢ ( 𝑚  ∈  ℕ  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							anbi2d | 
							⊢ ( 𝑚  ∈  ℕ  →  ( ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							rabbidv | 
							⊢ ( 𝑚  ∈  ℕ  →  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) }  =  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } )  | 
						
						
							| 48 | 
							
								47
							 | 
							mpteq2ia | 
							⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } )  | 
						
						
							| 49 | 
							
								13 48
							 | 
							eqtri | 
							⊢ 𝑂  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } )  | 
						
						
							| 50 | 
							
								1 4
							 | 
							ltsubrpd | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  <  𝐴 )  | 
						
						
							| 51 | 
							
								3 5 6 7 39 1 50 13 14 15 16
							 | 
							fourierdlem54 | 
							⊢ ( 𝜑  →  ( ( 𝑁  ∈  ℕ  ∧  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) )  ∧  𝑆  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝐻 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							simpld | 
							⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∧  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝑁  ∈  ℕ )  | 
						
						
							| 54 | 
							
								2 1
							 | 
							resubcld | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℝ )  | 
						
						
							| 55 | 
							
								3 54
							 | 
							eqeltrid | 
							⊢ ( 𝜑  →  𝑇  ∈  ℝ )  | 
						
						
							| 56 | 
							
								52
							 | 
							simprd | 
							⊢ ( 𝜑  →  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) )  | 
						
						
							| 57 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐴  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 58 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 59 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  | 
						
						
							| 60 | 
							
								
							 | 
							eliccre | 
							⊢ ( ( ( 𝐴  −  𝑋 )  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 61 | 
							
								57 58 59 60
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 62 | 
							
								61 9
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 63 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  𝑗  →  ( 𝑆 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑗 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							oveq1d | 
							⊢ ( 𝑖  =  𝑗  →  ( ( 𝑆 ‘ 𝑖 )  +  𝑇 )  =  ( ( 𝑆 ‘ 𝑗 )  +  𝑇 ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							cbvmptv | 
							⊢ ( 𝑖  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑆 ‘ 𝑖 )  +  𝑇 ) )  =  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  𝑇 ) )  | 
						
						
							| 66 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( ( 𝐴  −  𝑋 )  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐴  +  𝑇 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( ( 𝐴  −  𝑋 )  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐴  +  𝑇 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } )  | 
						
						
							| 67 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝑀  ∈  ℕ )  | 
						
						
							| 68 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) )  | 
						
						
							| 69 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 70 | 
							
								9
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 71 | 
							
								10
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 72 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐴  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 73 | 
							
								72
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐴  −  𝑋 )  ∈  ℝ* )  | 
						
						
							| 74 | 
							
								
							 | 
							pnfxr | 
							⊢ +∞  ∈  ℝ*  | 
						
						
							| 75 | 
							
								74
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  +∞  ∈  ℝ* )  | 
						
						
							| 76 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 77 | 
							
								50
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐴  −  𝑋 )  <  𝐴 )  | 
						
						
							| 78 | 
							
								1
							 | 
							ltpnfd | 
							⊢ ( 𝜑  →  𝐴  <  +∞ )  | 
						
						
							| 79 | 
							
								78
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝐴  <  +∞ )  | 
						
						
							| 80 | 
							
								73 75 76 77 79
							 | 
							eliood | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝐴  ∈  ( ( 𝐴  −  𝑋 ) (,) +∞ ) )  | 
						
						
							| 81 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝑗  ∈  ( 0 ..^ 𝑁 ) )  | 
						
						
							| 82 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  | 
						
						
							| 83 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐹  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) )  =  ( 𝐹  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) )  | 
						
						
							| 84 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑦  ∈  ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) )  ↦  ( ( 𝐹  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ‘ ( 𝑦  −  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ) )  =  ( 𝑦  ∈  ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) )  ↦  ( ( 𝐹  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ‘ ( 𝑦  −  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ) )  | 
						
						
							| 85 | 
							
								5 3 67 68 69 70 71 72 80 13 14 15 16 17 18 81 82 83 84 19
							 | 
							fourierdlem90 | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 86 | 
							
								11
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝑅 )  =  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝑅 )  | 
						
						
							| 88 | 
							
								5 3 67 68 69 70 71 86 72 80 13 14 15 16 17 18 81 82 19 87
							 | 
							fourierdlem89 | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) )  =  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝑅 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( 𝐹 ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ 𝑗 ) ) )  | 
						
						
							| 89 | 
							
								12
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 90 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 )  =  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 )  | 
						
						
							| 91 | 
							
								5 3 67 68 69 70 71 89 72 80 13 14 15 16 17 18 81 82 19 90
							 | 
							fourierdlem91 | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) )  +  1 ) ) ,  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  | 
						
						
							| 92 | 
							
								39 1 49 53 55 56 62 65 66 8 85 88 91
							 | 
							fourierdlem92 | 
							⊢ ( 𝜑  →  ∫ ( ( ( 𝐴  −  𝑋 )  +  𝑇 ) [,] ( 𝐴  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 93 | 
							
								38 92
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 94 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 95 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  ( 𝐵  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 96 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  𝐵  ∈  ℝ )  | 
						
						
							| 97 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  | 
						
						
							| 98 | 
							
								
							 | 
							eliccre | 
							⊢ ( ( ( 𝐵  −  𝑋 )  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 99 | 
							
								95 96 97 98
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 100 | 
							
								94 99
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 101 | 
							
								29
							 | 
							rexrd | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ℝ* )  | 
						
						
							| 102 | 
							
								74
							 | 
							a1i | 
							⊢ ( 𝜑  →  +∞  ∈  ℝ* )  | 
						
						
							| 103 | 
							
								2 4
							 | 
							ltsubrpd | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  <  𝐵 )  | 
						
						
							| 104 | 
							
								2
							 | 
							ltpnfd | 
							⊢ ( 𝜑  →  𝐵  <  +∞ )  | 
						
						
							| 105 | 
							
								101 102 2 103 104
							 | 
							eliood | 
							⊢ ( 𝜑  →  𝐵  ∈  ( ( 𝐵  −  𝑋 ) (,) +∞ ) )  | 
						
						
							| 106 | 
							
								5 3 6 7 8 9 10 11 12 29 105
							 | 
							fourierdlem105 | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 107 | 
							
								100 106
							 | 
							itgcl | 
							⊢ ( 𝜑  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 108 | 
							
								93 107
							 | 
							eqeltrrd | 
							⊢ ( 𝜑  →  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 109 | 
							
								108
							 | 
							subidd | 
							⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  0 )  | 
						
						
							| 110 | 
							
								109
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  0  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  0  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 112 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐴  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 113 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 114 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 115 | 
							
								5 6 7
							 | 
							fourierdlem11 | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 ) )  | 
						
						
							| 116 | 
							
								115
							 | 
							simp3d | 
							⊢ ( 𝜑  →  𝐴  <  𝐵 )  | 
						
						
							| 117 | 
							
								1 2 116
							 | 
							ltled | 
							⊢ ( 𝜑  →  𝐴  ≤  𝐵 )  | 
						
						
							| 118 | 
							
								117
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐴  ≤  𝐵 )  | 
						
						
							| 119 | 
							
								1 2 22
							 | 
							lesub1d | 
							⊢ ( 𝜑  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  −  𝑋 )  ≤  ( 𝐵  −  𝑋 ) ) )  | 
						
						
							| 120 | 
							
								119
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  −  𝑋 )  ≤  ( 𝐵  −  𝑋 ) ) )  | 
						
						
							| 121 | 
							
								118 120
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐴  −  𝑋 )  ≤  ( 𝐵  −  𝑋 ) )  | 
						
						
							| 122 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐵  ∈  ℝ )  | 
						
						
							| 123 | 
							
								22
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝑋  ∈  ℝ )  | 
						
						
							| 124 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝑇  <  𝑋 )  | 
						
						
							| 125 | 
							
								3 124
							 | 
							eqbrtrrid | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝐴 )  <  𝑋 )  | 
						
						
							| 126 | 
							
								122 113 123 125
							 | 
							ltsub23d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝑋 )  <  𝐴 )  | 
						
						
							| 127 | 
							
								114 113 126
							 | 
							ltled | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝑋 )  ≤  𝐴 )  | 
						
						
							| 128 | 
							
								112 113 114 121 127
							 | 
							eliccd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝑋 )  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  | 
						
						
							| 129 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 130 | 
							
								129 61
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 131 | 
							
								130
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 132 | 
							
								39
							 | 
							rexrd | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  ∈  ℝ* )  | 
						
						
							| 133 | 
							
								1 2 22 116
							 | 
							ltsub1dd | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  <  ( 𝐵  −  𝑋 ) )  | 
						
						
							| 134 | 
							
								29
							 | 
							ltpnfd | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  <  +∞ )  | 
						
						
							| 135 | 
							
								132 102 29 133 134
							 | 
							eliood | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ( ( 𝐴  −  𝑋 ) (,) +∞ ) )  | 
						
						
							| 136 | 
							
								5 3 6 7 8 9 10 11 12 39 135
							 | 
							fourierdlem105 | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 137 | 
							
								136
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 138 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝑀  ∈  ℕ )  | 
						
						
							| 139 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) )  | 
						
						
							| 140 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 141 | 
							
								9
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 142 | 
							
								10
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 143 | 
							
								11
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  | 
						
						
							| 144 | 
							
								12
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 145 | 
							
								101
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝑋 )  ∈  ℝ* )  | 
						
						
							| 146 | 
							
								74
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  +∞  ∈  ℝ* )  | 
						
						
							| 147 | 
							
								113
							 | 
							ltpnfd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐴  <  +∞ )  | 
						
						
							| 148 | 
							
								145 146 113 126 147
							 | 
							eliood | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐴  ∈  ( ( 𝐵  −  𝑋 ) (,) +∞ ) )  | 
						
						
							| 149 | 
							
								5 3 138 139 140 141 142 143 144 114 148
							 | 
							fourierdlem105 | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 150 | 
							
								112 113 128 131 137 149
							 | 
							itgspliticc | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 151 | 
							
								150
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 152 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 153 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐴  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 154 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐵  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 155 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  | 
						
						
							| 156 | 
							
								
							 | 
							eliccre | 
							⊢ ( ( ( 𝐴  −  𝑋 )  ∈  ℝ  ∧  ( 𝐵  −  𝑋 )  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 157 | 
							
								153 154 155 156
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 158 | 
							
								152 157
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 159 | 
							
								158 136
							 | 
							itgcl | 
							⊢ ( 𝜑  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 160 | 
							
								159
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 161 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 162 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐵  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 163 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 164 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  | 
						
						
							| 165 | 
							
								
							 | 
							eliccre | 
							⊢ ( ( ( 𝐵  −  𝑋 )  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 166 | 
							
								162 163 164 165
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 167 | 
							
								161 166
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 168 | 
							
								167
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 169 | 
							
								168 149
							 | 
							itgcl | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 170 | 
							
								108
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 171 | 
							
								160 169 170
							 | 
							addsubassd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 172 | 
							
								111 151 171
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  0  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 173 | 
							
								172
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  0 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) )  | 
						
						
							| 174 | 
							
								160
							 | 
							subid1d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  0 )  =  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 175 | 
							
								159
							 | 
							subidd | 
							⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  0 )  | 
						
						
							| 176 | 
							
								175
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( 0  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 177 | 
							
								176
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( 0  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 178 | 
							
								169 170
							 | 
							subcld | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  ∈  ℂ )  | 
						
						
							| 179 | 
							
								160 160 178
							 | 
							subsub4d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) )  | 
						
						
							| 180 | 
							
								
							 | 
							df-neg | 
							⊢ - ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( 0  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 181 | 
							
								169 170
							 | 
							negsubdi2d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  - ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 182 | 
							
								180 181
							 | 
							eqtr3id | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 0  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 183 | 
							
								177 179 182
							 | 
							3eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 184 | 
							
								173 174 183
							 | 
							3eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 185 | 
							
								107
							 | 
							subidd | 
							⊢ ( 𝜑  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  0 )  | 
						
						
							| 186 | 
							
								185
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  0  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 187 | 
							
								186
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  0 )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 188 | 
							
								187
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  0 )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 189 | 
							
								169
							 | 
							addridd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  0 )  =  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 190 | 
							
								114 122 113 127 118
							 | 
							eliccd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐴  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  | 
						
						
							| 191 | 
							
								100
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 192 | 
							
								1 2
							 | 
							iccssred | 
							⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ )  | 
						
						
							| 193 | 
							
								8 192
							 | 
							feqresmpt | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 194 | 
							
								8 192
							 | 
							fssresd | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )  | 
						
						
							| 195 | 
							
								
							 | 
							ioossicc | 
							⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  | 
						
						
							| 196 | 
							
								1
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ* )  | 
						
						
							| 197 | 
							
								196
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐴  ∈  ℝ* )  | 
						
						
							| 198 | 
							
								2
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ* )  | 
						
						
							| 199 | 
							
								198
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 200 | 
							
								5 6 7
							 | 
							fourierdlem15 | 
							⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 201 | 
							
								200
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 202 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) )  | 
						
						
							| 203 | 
							
								197 199 201 202
							 | 
							fourierdlem8 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 204 | 
							
								195 203
							 | 
							sstrid | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 205 | 
							
								204
							 | 
							resabs1d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  | 
						
						
							| 206 | 
							
								205 10
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  | 
						
						
							| 207 | 
							
								205
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  | 
						
						
							| 208 | 
							
								207
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  =  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  | 
						
						
							| 209 | 
							
								11 208
							 | 
							eleqtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  | 
						
						
							| 210 | 
							
								207
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 211 | 
							
								12 210
							 | 
							eleqtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  | 
						
						
							| 212 | 
							
								5 6 7 194 206 209 211
							 | 
							fourierdlem69 | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  𝐿1 )  | 
						
						
							| 213 | 
							
								193 212
							 | 
							eqeltrrd | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 214 | 
							
								213
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 215 | 
							
								114 122 190 191 149 214
							 | 
							itgspliticc | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 216 | 
							
								215
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 217 | 
							
								216
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) )  | 
						
						
							| 218 | 
							
								107
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 219 | 
							
								215 218
							 | 
							eqeltrrd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  ∈  ℂ )  | 
						
						
							| 220 | 
							
								169 218 219
							 | 
							addsub12d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) )  | 
						
						
							| 221 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 222 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 223 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐵  ∈  ℝ )  | 
						
						
							| 224 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 225 | 
							
								
							 | 
							eliccre | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 226 | 
							
								222 223 224 225
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 227 | 
							
								221 226
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 228 | 
							
								227 213
							 | 
							itgcl | 
							⊢ ( 𝜑  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 229 | 
							
								228
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 230 | 
							
								169 169 229
							 | 
							subsub4d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 231 | 
							
								230
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 232 | 
							
								231
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 233 | 
							
								169
							 | 
							subidd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  0 )  | 
						
						
							| 234 | 
							
								233
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( 0  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 235 | 
							
								
							 | 
							df-neg | 
							⊢ - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( 0  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 236 | 
							
								234 235
							 | 
							eqtr4di | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 237 | 
							
								236
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 238 | 
							
								218 229
							 | 
							negsubd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 239 | 
							
								232 237 238
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 240 | 
							
								217 220 239
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 241 | 
							
								188 189 240
							 | 
							3eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 242 | 
							
								241
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 243 | 
							
								108 107 228
							 | 
							subsubd | 
							⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 244 | 
							
								93
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 245 | 
							
								244 109
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  0 )  | 
						
						
							| 246 | 
							
								245
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( 0  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 247 | 
							
								228
							 | 
							addlidd | 
							⊢ ( 𝜑  →  ( 0  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 248 | 
							
								243 246 247
							 | 
							3eqtrd | 
							⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 249 | 
							
								248
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 250 | 
							
								184 242 249
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 251 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝐴  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 252 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝐵  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 253 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 254 | 
							
								39 1 50
							 | 
							ltled | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  ≤  𝐴 )  | 
						
						
							| 255 | 
							
								254
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝐴  −  𝑋 )  ≤  𝐴 )  | 
						
						
							| 256 | 
							
								22
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝑋  ∈  ℝ )  | 
						
						
							| 257 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝐵  ∈  ℝ )  | 
						
						
							| 258 | 
							
								
							 | 
							id | 
							⊢ ( 𝑋  ≤  𝑇  →  𝑋  ≤  𝑇 )  | 
						
						
							| 259 | 
							
								258 3
							 | 
							breqtrdi | 
							⊢ ( 𝑋  ≤  𝑇  →  𝑋  ≤  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 260 | 
							
								259
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝑋  ≤  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 261 | 
							
								256 257 253 260
							 | 
							lesubd | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝐴  ≤  ( 𝐵  −  𝑋 ) )  | 
						
						
							| 262 | 
							
								251 252 253 255 261
							 | 
							eliccd | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝐴  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  | 
						
						
							| 263 | 
							
								158
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 264 | 
							
								132 102 1 50 78
							 | 
							eliood | 
							⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝐴  −  𝑋 ) (,) +∞ ) )  | 
						
						
							| 265 | 
							
								5 3 6 7 8 9 10 11 12 39 264
							 | 
							fourierdlem105 | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 266 | 
							
								265
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 267 | 
							
								1
							 | 
							leidd | 
							⊢ ( 𝜑  →  𝐴  ≤  𝐴 )  | 
						
						
							| 268 | 
							
								4
							 | 
							rpge0d | 
							⊢ ( 𝜑  →  0  ≤  𝑋 )  | 
						
						
							| 269 | 
							
								2 22
							 | 
							subge02d | 
							⊢ ( 𝜑  →  ( 0  ≤  𝑋  ↔  ( 𝐵  −  𝑋 )  ≤  𝐵 ) )  | 
						
						
							| 270 | 
							
								268 269
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ≤  𝐵 )  | 
						
						
							| 271 | 
							
								
							 | 
							iccss | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐴  ≤  𝐴  ∧  ( 𝐵  −  𝑋 )  ≤  𝐵 ) )  →  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ⊆  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 272 | 
							
								1 2 267 270 271
							 | 
							syl22anc | 
							⊢ ( 𝜑  →  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ⊆  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 273 | 
							
								
							 | 
							iccmbl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  −  𝑋 )  ∈  ℝ )  →  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ∈  dom  vol )  | 
						
						
							| 274 | 
							
								1 29 273
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ∈  dom  vol )  | 
						
						
							| 275 | 
							
								272 274 227 213
							 | 
							iblss | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 276 | 
							
								275
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 277 | 
							
								251 252 262 263 266 276
							 | 
							itgspliticc | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 278 | 
							
								268
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  0  ≤  𝑋 )  | 
						
						
							| 279 | 
							
								269
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 0  ≤  𝑋  ↔  ( 𝐵  −  𝑋 )  ≤  𝐵 ) )  | 
						
						
							| 280 | 
							
								278 279
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝐵  −  𝑋 )  ≤  𝐵 )  | 
						
						
							| 281 | 
							
								253 257 252 261 280
							 | 
							eliccd | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝐵  −  𝑋 )  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 282 | 
							
								227
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 283 | 
							
								2
							 | 
							leidd | 
							⊢ ( 𝜑  →  𝐵  ≤  𝐵 )  | 
						
						
							| 284 | 
							
								283
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝐵  ≤  𝐵 )  | 
						
						
							| 285 | 
							
								
							 | 
							iccss | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐴  ≤  ( 𝐵  −  𝑋 )  ∧  𝐵  ≤  𝐵 ) )  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 286 | 
							
								253 257 261 284 285
							 | 
							syl22anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 287 | 
							
								
							 | 
							iccmbl | 
							⊢ ( ( ( 𝐵  −  𝑋 )  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ∈  dom  vol )  | 
						
						
							| 288 | 
							
								29 2 287
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ∈  dom  vol )  | 
						
						
							| 289 | 
							
								288
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ∈  dom  vol )  | 
						
						
							| 290 | 
							
								213
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 291 | 
							
								286 289 282 290
							 | 
							iblss | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 292 | 
							
								253 257 281 282 276 291
							 | 
							itgspliticc | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 293 | 
							
								292
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 294 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  𝐹 : ℝ ⟶ ℂ )  | 
						
						
							| 295 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 296 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐵  −  𝑋 )  ∈  ℝ )  | 
						
						
							| 297 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  | 
						
						
							| 298 | 
							
								
							 | 
							eliccre | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  −  𝑋 )  ∈  ℝ  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 299 | 
							
								295 296 297 298
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 300 | 
							
								294 299
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 301 | 
							
								300 275
							 | 
							itgcl | 
							⊢ ( 𝜑  →  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 302 | 
							
								301 107 107
							 | 
							addsubassd | 
							⊢ ( 𝜑  →  ( ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 303 | 
							
								302
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 304 | 
							
								185
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  0 ) )  | 
						
						
							| 305 | 
							
								301
							 | 
							addridd | 
							⊢ ( 𝜑  →  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  0 )  =  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 306 | 
							
								304 305
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 307 | 
							
								306
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 308 | 
							
								293 303 307
							 | 
							3eqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 309 | 
							
								308
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 310 | 
							
								93
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 311 | 
							
								107
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 312 | 
							
								310 311
							 | 
							eqeltrrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 313 | 
							
								282 290
							 | 
							itgcl | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ )  | 
						
						
							| 314 | 
							
								312 313 311
							 | 
							addsub12d | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 315 | 
							
								313 312 311
							 | 
							addsubassd | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  | 
						
						
							| 316 | 
							
								314 315
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 317 | 
							
								277 309 316
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 318 | 
							
								310
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  | 
						
						
							| 319 | 
							
								313 312
							 | 
							pncand | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 320 | 
							
								317 318 319
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  | 
						
						
							| 321 | 
							
								250 320 55 22
							 | 
							ltlecasei | 
							⊢ ( 𝜑  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  |