Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem109.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
fourierdlem109.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
fourierdlem109.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
4 |
|
fourierdlem109.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
5 |
|
fourierdlem109.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
6 |
|
fourierdlem109.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
7 |
|
fourierdlem109.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
8 |
|
fourierdlem109.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
9 |
|
fourierdlem109.fper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
10 |
|
fourierdlem109.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
11 |
|
fourierdlem109.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
12 |
|
fourierdlem109.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
13 |
|
fourierdlem109.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
14 |
|
fourierdlem109.h |
⊢ 𝐻 = ( { ( 𝐴 − 𝑋 ) , ( 𝐵 − 𝑋 ) } ∪ { 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
15 |
|
fourierdlem109.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝐻 ) − 1 ) |
16 |
|
fourierdlem109.16 |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
17 |
|
fourierdlem109.17 |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
18 |
|
fourierdlem109.18 |
⊢ 𝐽 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) |
19 |
|
fourierdlem109.19 |
⊢ 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) ≤ ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ) |
20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑋 ) → 𝐴 ∈ ℝ ) |
21 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑋 ) → 𝐵 ∈ ℝ ) |
22 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑋 ) → 𝑋 ∈ ℝ ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝑋 ) → 0 < 𝑋 ) |
24 |
22 23
|
elrpd |
⊢ ( ( 𝜑 ∧ 0 < 𝑋 ) → 𝑋 ∈ ℝ+ ) |
25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑋 ) → 𝑀 ∈ ℕ ) |
26 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑋 ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
27 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑋 ) → 𝐹 : ℝ ⟶ ℂ ) |
28 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑋 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
29 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑋 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
30 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑋 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
31 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑋 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
32 |
20 21 3 24 5 25 26 27 28 29 30 31
|
fourierdlem108 |
⊢ ( ( 𝜑 ∧ 0 < 𝑋 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
33 |
|
oveq2 |
⊢ ( 𝑋 = 0 → ( 𝐴 − 𝑋 ) = ( 𝐴 − 0 ) ) |
34 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
35 |
34
|
subid1d |
⊢ ( 𝜑 → ( 𝐴 − 0 ) = 𝐴 ) |
36 |
33 35
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝐴 − 𝑋 ) = 𝐴 ) |
37 |
|
oveq2 |
⊢ ( 𝑋 = 0 → ( 𝐵 − 𝑋 ) = ( 𝐵 − 0 ) ) |
38 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
39 |
38
|
subid1d |
⊢ ( 𝜑 → ( 𝐵 − 0 ) = 𝐵 ) |
40 |
37 39
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝐵 − 𝑋 ) = 𝐵 ) |
41 |
36 40
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) = ( 𝐴 [,] 𝐵 ) ) |
42 |
41
|
itgeq1d |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
43 |
42
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑋 ) ∧ 𝑋 = 0 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
44 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑋 ) ∧ ¬ 𝑋 = 0 ) → 𝜑 ) |
45 |
44 4
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑋 ) ∧ ¬ 𝑋 = 0 ) → 𝑋 ∈ ℝ ) |
46 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑋 ) ∧ ¬ 𝑋 = 0 ) → 0 ∈ ℝ ) |
47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑋 ) ∧ ¬ 𝑋 = 0 ) → ¬ 𝑋 = 0 ) |
48 |
47
|
neqned |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑋 ) ∧ ¬ 𝑋 = 0 ) → 𝑋 ≠ 0 ) |
49 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑋 ) ∧ ¬ 𝑋 = 0 ) → ¬ 0 < 𝑋 ) |
50 |
45 46 48 49
|
lttri5d |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑋 ) ∧ ¬ 𝑋 = 0 ) → 𝑋 < 0 ) |
51 |
4
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
52 |
34 51
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) ∈ ℂ ) |
53 |
52 51
|
subnegd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝑋 ) − - 𝑋 ) = ( ( 𝐴 − 𝑋 ) + 𝑋 ) ) |
54 |
34 51
|
npcand |
⊢ ( 𝜑 → ( ( 𝐴 − 𝑋 ) + 𝑋 ) = 𝐴 ) |
55 |
53 54
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝑋 ) − - 𝑋 ) = 𝐴 ) |
56 |
38 51
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ∈ ℂ ) |
57 |
56 51
|
subnegd |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑋 ) − - 𝑋 ) = ( ( 𝐵 − 𝑋 ) + 𝑋 ) ) |
58 |
38 51
|
npcand |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑋 ) + 𝑋 ) = 𝐵 ) |
59 |
57 58
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑋 ) − - 𝑋 ) = 𝐵 ) |
60 |
55 59
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 − 𝑋 ) − - 𝑋 ) [,] ( ( 𝐵 − 𝑋 ) − - 𝑋 ) ) = ( 𝐴 [,] 𝐵 ) ) |
61 |
60
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( ( 𝐴 − 𝑋 ) − - 𝑋 ) [,] ( ( 𝐵 − 𝑋 ) − - 𝑋 ) ) ) |
62 |
61
|
itgeq1d |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( ( 𝐴 − 𝑋 ) − - 𝑋 ) [,] ( ( 𝐵 − 𝑋 ) − - 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 0 ) → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( ( 𝐴 − 𝑋 ) − - 𝑋 ) [,] ( ( 𝐵 − 𝑋 ) − - 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
64 |
1 4
|
resubcld |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 0 ) → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
66 |
2 4
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 0 ) → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
68 |
|
eqid |
⊢ ( ( 𝐵 − 𝑋 ) − ( 𝐴 − 𝑋 ) ) = ( ( 𝐵 − 𝑋 ) − ( 𝐴 − 𝑋 ) ) |
69 |
4
|
renegcld |
⊢ ( 𝜑 → - 𝑋 ∈ ℝ ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 0 ) → - 𝑋 ∈ ℝ ) |
71 |
4
|
lt0neg1d |
⊢ ( 𝜑 → ( 𝑋 < 0 ↔ 0 < - 𝑋 ) ) |
72 |
71
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑋 < 0 ) → 0 < - 𝑋 ) |
73 |
70 72
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑋 < 0 ) → - 𝑋 ∈ ℝ+ ) |
74 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑝 ‘ 𝑖 ) = ( 𝑝 ‘ 𝑗 ) ) |
75 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 + 1 ) = ( 𝑗 + 1 ) ) |
76 |
75
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑝 ‘ ( 𝑖 + 1 ) ) = ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) |
77 |
74 76
|
breq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) |
78 |
77
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) |
79 |
78
|
anbi2i |
⊢ ( ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 − 𝑋 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) |
80 |
79
|
a1i |
⊢ ( 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) → ( ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 − 𝑋 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) ) |
81 |
80
|
rabbiia |
⊢ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } = { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 − 𝑋 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } |
82 |
81
|
mpteq2i |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 − 𝑋 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } ) |
83 |
13 82
|
eqtri |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 − 𝑋 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } ) |
84 |
5 6 7
|
fourierdlem11 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |
85 |
84
|
simp3d |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
86 |
1 2 4 85
|
ltsub1dd |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) < ( 𝐵 − 𝑋 ) ) |
87 |
3 5 6 7 64 66 86 13 14 15 16
|
fourierdlem54 |
⊢ ( 𝜑 → ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ∧ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) ) |
88 |
87
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ) |
89 |
88
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 0 ) → 𝑁 ∈ ℕ ) |
91 |
88
|
simprd |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) |
92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 0 ) → 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) |
93 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 0 ) → 𝐹 : ℝ ⟶ ℂ ) |
94 |
38 34 51
|
nnncan2d |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑋 ) − ( 𝐴 − 𝑋 ) ) = ( 𝐵 − 𝐴 ) ) |
95 |
94 3
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑋 ) − ( 𝐴 − 𝑋 ) ) = 𝑇 ) |
96 |
95
|
oveq2d |
⊢ ( 𝜑 → ( 𝑥 + ( ( 𝐵 − 𝑋 ) − ( 𝐴 − 𝑋 ) ) ) = ( 𝑥 + 𝑇 ) ) |
97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + ( ( 𝐵 − 𝑋 ) − ( 𝐴 − 𝑋 ) ) ) = ( 𝑥 + 𝑇 ) ) |
98 |
97
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + ( ( 𝐵 − 𝑋 ) − ( 𝐴 − 𝑋 ) ) ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) ) |
99 |
98 9
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + ( ( 𝐵 − 𝑋 ) − ( 𝐴 − 𝑋 ) ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
100 |
99
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 < 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + ( ( 𝐵 − 𝑋 ) − ( 𝐴 − 𝑋 ) ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
101 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑀 ∈ ℕ ) |
102 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
103 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
104 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
105 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
106 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
107 |
64
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) ∈ ℝ* ) |
108 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
109 |
108
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
110 |
66
|
ltpnfd |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) < +∞ ) |
111 |
107 109 66 86 110
|
eliood |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ∈ ( ( 𝐴 − 𝑋 ) (,) +∞ ) ) |
112 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 − 𝑋 ) ∈ ( ( 𝐴 − 𝑋 ) (,) +∞ ) ) |
113 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( 𝑘 · 𝑇 ) ) ) |
114 |
113
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
115 |
114
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
116 |
115
|
cbvrabv |
⊢ { 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } |
117 |
116
|
uneq2i |
⊢ ( { ( 𝐴 − 𝑋 ) , ( 𝐵 − 𝑋 ) } ∪ { 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( 𝐴 − 𝑋 ) , ( 𝐵 − 𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
118 |
14 117
|
eqtri |
⊢ 𝐻 = ( { ( 𝐴 − 𝑋 ) , ( 𝐵 − 𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
119 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) ) |
120 |
|
eqid |
⊢ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
121 |
|
eqid |
⊢ ( 𝐹 ↾ ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( 𝐹 ↾ ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
122 |
|
eqid |
⊢ ( 𝑦 ∈ ( ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ ( 𝑦 − ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) = ( 𝑦 ∈ ( ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ ( 𝑦 − ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) |
123 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝑖 ) ) |
124 |
123
|
breq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑄 ‘ 𝑗 ) ≤ ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) ↔ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) |
125 |
124
|
cbvrabv |
⊢ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) ≤ ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } = { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } |
126 |
125
|
supeq1i |
⊢ sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) ≤ ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) |
127 |
126
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) ≤ ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ) = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ) |
128 |
19 127
|
eqtri |
⊢ 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ) |
129 |
5 3 101 102 103 104 105 106 112 13 118 15 16 17 18 119 120 121 122 128
|
fourierdlem90 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) |
130 |
129
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 < 0 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) |
131 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
132 |
|
eqid |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) |
133 |
5 3 101 102 103 104 105 131 106 112 13 118 15 16 17 18 119 120 128 132
|
fourierdlem89 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( 𝐹 ‘ ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑗 ) ) ) |
134 |
133
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 < 0 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( 𝐹 ‘ ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑗 ) ) ) |
135 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
136 |
|
eqid |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 ) = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 ) |
137 |
5 3 101 102 103 104 105 135 106 112 13 118 15 16 17 18 119 120 128 136
|
fourierdlem91 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) , ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
138 |
137
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 < 0 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) , ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
139 |
65 67 68 73 83 90 92 93 100 130 134 138
|
fourierdlem108 |
⊢ ( ( 𝜑 ∧ 𝑋 < 0 ) → ∫ ( ( ( 𝐴 − 𝑋 ) − - 𝑋 ) [,] ( ( 𝐵 − 𝑋 ) − - 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
140 |
63 139
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑋 < 0 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
141 |
44 50 140
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑋 ) ∧ ¬ 𝑋 = 0 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
142 |
43 141
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ 0 < 𝑋 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
143 |
32 142
|
pm2.61dan |
⊢ ( 𝜑 → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |