| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem11.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 2 |  | fourierdlem11.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 3 |  | fourierdlem11.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 4 | 1 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 6 | 3 5 | mpbid | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 7 | 6 | simprd | ⊢ ( 𝜑  →  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) ) | 
						
							| 9 | 8 | simpld | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  𝐴 ) | 
						
							| 10 | 6 | simpld | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 11 |  | elmapi | ⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 13 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 14 | 2 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 15 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 16 | 15 | leidd | ⊢ ( 𝜑  →  0  ≤  0 ) | 
						
							| 17 | 2 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 18 | 2 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑀 ) | 
						
							| 19 | 15 17 18 | ltled | ⊢ ( 𝜑  →  0  ≤  𝑀 ) | 
						
							| 20 | 13 14 13 16 19 | elfzd | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 21 | 12 20 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  ∈  ℝ ) | 
						
							| 22 | 9 21 | eqeltrrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 23 | 8 | simprd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) | 
						
							| 24 | 17 | leidd | ⊢ ( 𝜑  →  𝑀  ≤  𝑀 ) | 
						
							| 25 | 13 14 14 19 24 | elfzd | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 26 | 12 25 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 27 | 23 26 | eqeltrrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 28 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 29 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 30 | 29 | a1i | ⊢ ( 𝜑  →  0  ≤  1 ) | 
						
							| 31 | 2 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑀 ) | 
						
							| 32 | 13 14 28 30 31 | elfzd | ⊢ ( 𝜑  →  1  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 33 | 12 32 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 1 )  ∈  ℝ ) | 
						
							| 34 |  | elfzo | ⊢ ( ( 0  ∈  ℤ  ∧  0  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 0  ∈  ( 0 ..^ 𝑀 )  ↔  ( 0  ≤  0  ∧  0  <  𝑀 ) ) ) | 
						
							| 35 | 13 13 14 34 | syl3anc | ⊢ ( 𝜑  →  ( 0  ∈  ( 0 ..^ 𝑀 )  ↔  ( 0  ≤  0  ∧  0  <  𝑀 ) ) ) | 
						
							| 36 | 16 18 35 | mpbir2and | ⊢ ( 𝜑  →  0  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 37 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 38 |  | eleq1 | ⊢ ( 𝑖  =  0  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↔  0  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 39 | 38 | anbi2d | ⊢ ( 𝑖  =  0  →  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ↔  ( 𝜑  ∧  0  ∈  ( 0 ..^ 𝑀 ) ) ) ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 0 ) ) | 
						
							| 41 |  | oveq1 | ⊢ ( 𝑖  =  0  →  ( 𝑖  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( 𝑖  =  0  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  =  ( 𝑄 ‘ ( 0  +  1 ) ) ) | 
						
							| 43 | 40 42 | breq12d | ⊢ ( 𝑖  =  0  →  ( ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑄 ‘ 0 )  <  ( 𝑄 ‘ ( 0  +  1 ) ) ) ) | 
						
							| 44 | 39 43 | imbi12d | ⊢ ( 𝑖  =  0  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( 𝜑  ∧  0  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 0 )  <  ( 𝑄 ‘ ( 0  +  1 ) ) ) ) ) | 
						
							| 45 | 7 | simprd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 46 | 45 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 47 | 44 46 | vtoclg | ⊢ ( 0  ∈  ℝ  →  ( ( 𝜑  ∧  0  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 0 )  <  ( 𝑄 ‘ ( 0  +  1 ) ) ) ) | 
						
							| 48 | 37 47 | ax-mp | ⊢ ( ( 𝜑  ∧  0  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 0 )  <  ( 𝑄 ‘ ( 0  +  1 ) ) ) | 
						
							| 49 | 36 48 | mpdan | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  <  ( 𝑄 ‘ ( 0  +  1 ) ) ) | 
						
							| 50 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 51 | 50 | a1i | ⊢ ( 𝜑  →  ( 0  +  1 )  =  1 ) | 
						
							| 52 | 51 | fveq2d | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 0  +  1 ) )  =  ( 𝑄 ‘ 1 ) ) | 
						
							| 53 | 49 9 52 | 3brtr3d | ⊢ ( 𝜑  →  𝐴  <  ( 𝑄 ‘ 1 ) ) | 
						
							| 54 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 55 | 2 54 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 56 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 57 |  | 0zd | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  0  ∈  ℤ ) | 
						
							| 58 |  | elfzel2 | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 59 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  𝑖  ∈  ℤ ) | 
						
							| 60 |  | 0red | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  0  ∈  ℝ ) | 
						
							| 61 | 59 | zred | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  𝑖  ∈  ℝ ) | 
						
							| 62 |  | 1red | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  1  ∈  ℝ ) | 
						
							| 63 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 64 | 63 | a1i | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  0  <  1 ) | 
						
							| 65 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  1  ≤  𝑖 ) | 
						
							| 66 | 60 62 61 64 65 | ltletrd | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  0  <  𝑖 ) | 
						
							| 67 | 60 61 66 | ltled | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  0  ≤  𝑖 ) | 
						
							| 68 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  𝑖  ≤  𝑀 ) | 
						
							| 69 | 57 58 59 67 68 | elfzd | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 71 | 56 70 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 72 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 73 |  | 0zd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  0  ∈  ℤ ) | 
						
							| 74 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 75 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑖  ∈  ℤ ) | 
						
							| 77 |  | 0red | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  0  ∈  ℝ ) | 
						
							| 78 | 75 | zred | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 79 |  | 1red | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  1  ∈  ℝ ) | 
						
							| 80 | 63 | a1i | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  0  <  1 ) | 
						
							| 81 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  1  ≤  𝑖 ) | 
						
							| 82 | 77 79 78 80 81 | ltletrd | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  0  <  𝑖 ) | 
						
							| 83 | 77 78 82 | ltled | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  0  ≤  𝑖 ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  0  ≤  𝑖 ) | 
						
							| 85 | 78 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑖  ∈  ℝ ) | 
						
							| 86 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 87 |  | peano2rem | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 88 | 86 87 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 89 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  𝑖  ≤  ( 𝑀  −  1 ) ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑖  ≤  ( 𝑀  −  1 ) ) | 
						
							| 91 | 86 | ltm1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑀  −  1 )  <  𝑀 ) | 
						
							| 92 | 85 88 86 90 91 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑖  <  𝑀 ) | 
						
							| 93 | 85 86 92 | ltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑖  ≤  𝑀 ) | 
						
							| 94 | 73 74 76 84 93 | elfzd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 95 | 72 94 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 96 | 76 | peano2zd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑖  +  1 )  ∈  ℤ ) | 
						
							| 97 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  0  ∈  ℝ ) | 
						
							| 98 |  | peano2re | ⊢ ( 𝑖  ∈  ℝ  →  ( 𝑖  +  1 )  ∈  ℝ ) | 
						
							| 99 | 85 98 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑖  +  1 )  ∈  ℝ ) | 
						
							| 100 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  1  ∈  ℝ ) | 
						
							| 101 | 63 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  0  <  1 ) | 
						
							| 102 | 78 98 | syl | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  ( 𝑖  +  1 )  ∈  ℝ ) | 
						
							| 103 | 78 | ltp1d | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  𝑖  <  ( 𝑖  +  1 ) ) | 
						
							| 104 | 79 78 102 81 103 | lelttrd | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  1  <  ( 𝑖  +  1 ) ) | 
						
							| 105 | 104 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  1  <  ( 𝑖  +  1 ) ) | 
						
							| 106 | 97 100 99 101 105 | lttrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  0  <  ( 𝑖  +  1 ) ) | 
						
							| 107 | 97 99 106 | ltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  0  ≤  ( 𝑖  +  1 ) ) | 
						
							| 108 | 85 88 100 90 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑖  +  1 )  ≤  ( ( 𝑀  −  1 )  +  1 ) ) | 
						
							| 109 | 2 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 110 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 111 | 109 110 | npcand | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 113 | 108 112 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑖  +  1 )  ≤  𝑀 ) | 
						
							| 114 | 73 74 96 107 113 | elfzd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 115 | 72 114 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 116 |  | elfzo | ⊢ ( ( 𝑖  ∈  ℤ  ∧  0  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↔  ( 0  ≤  𝑖  ∧  𝑖  <  𝑀 ) ) ) | 
						
							| 117 | 76 73 74 116 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↔  ( 0  ≤  𝑖  ∧  𝑖  <  𝑀 ) ) ) | 
						
							| 118 | 84 92 117 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 119 | 118 46 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 120 | 95 115 119 | ltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 121 | 55 71 120 | monoord | ⊢ ( 𝜑  →  ( 𝑄 ‘ 1 )  ≤  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 122 | 121 23 | breqtrd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 1 )  ≤  𝐵 ) | 
						
							| 123 | 22 33 27 53 122 | ltletrd | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 124 | 22 27 123 | 3jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 ) ) |