Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem11.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
2 |
|
fourierdlem11.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
3 |
|
fourierdlem11.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
4 |
1
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
5 |
2 4
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
6 |
3 5
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
8 |
7
|
simpld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
9 |
8
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
10 |
6
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
11 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
13 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
14 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
15 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
16 |
15
|
leidd |
⊢ ( 𝜑 → 0 ≤ 0 ) |
17 |
2
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
18 |
2
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
19 |
15 17 18
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
20 |
13 14 13 16 19
|
elfzd |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
21 |
12 20
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
22 |
9 21
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
23 |
8
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
24 |
17
|
leidd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑀 ) |
25 |
13 14 14 19 24
|
elfzd |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
26 |
12 25
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
27 |
23 26
|
eqeltrrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
28 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
29 |
|
0le1 |
⊢ 0 ≤ 1 |
30 |
29
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
31 |
2
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
32 |
13 14 28 30 31
|
elfzd |
⊢ ( 𝜑 → 1 ∈ ( 0 ... 𝑀 ) ) |
33 |
12 32
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) ∈ ℝ ) |
34 |
|
elfzo |
⊢ ( ( 0 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 0 ∧ 0 < 𝑀 ) ) ) |
35 |
13 13 14 34
|
syl3anc |
⊢ ( 𝜑 → ( 0 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 0 ∧ 0 < 𝑀 ) ) ) |
36 |
16 18 35
|
mpbir2and |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝑀 ) ) |
37 |
|
0re |
⊢ 0 ∈ ℝ |
38 |
|
eleq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 0 ∈ ( 0 ..^ 𝑀 ) ) ) |
39 |
38
|
anbi2d |
⊢ ( 𝑖 = 0 → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
40 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 0 ) ) |
41 |
|
oveq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 + 1 ) = ( 0 + 1 ) ) |
42 |
41
|
fveq2d |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 0 + 1 ) ) ) |
43 |
40 42
|
breq12d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) ) |
44 |
39 43
|
imbi12d |
⊢ ( 𝑖 = 0 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) ) ) |
45 |
7
|
simprd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
46 |
45
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
47 |
44 46
|
vtoclg |
⊢ ( 0 ∈ ℝ → ( ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) ) |
48 |
37 47
|
ax-mp |
⊢ ( ( 𝜑 ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) |
49 |
36 48
|
mpdan |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ ( 0 + 1 ) ) ) |
50 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
51 |
50
|
a1i |
⊢ ( 𝜑 → ( 0 + 1 ) = 1 ) |
52 |
51
|
fveq2d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 0 + 1 ) ) = ( 𝑄 ‘ 1 ) ) |
53 |
49 9 52
|
3brtr3d |
⊢ ( 𝜑 → 𝐴 < ( 𝑄 ‘ 1 ) ) |
54 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
55 |
2 54
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
56 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
57 |
|
0zd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 0 ∈ ℤ ) |
58 |
|
elfzel2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑀 ∈ ℤ ) |
59 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑖 ∈ ℤ ) |
60 |
|
0red |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 0 ∈ ℝ ) |
61 |
59
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑖 ∈ ℝ ) |
62 |
|
1red |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 1 ∈ ℝ ) |
63 |
|
0lt1 |
⊢ 0 < 1 |
64 |
63
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 0 < 1 ) |
65 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 1 ≤ 𝑖 ) |
66 |
60 62 61 64 65
|
ltletrd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 0 < 𝑖 ) |
67 |
60 61 66
|
ltled |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 0 ≤ 𝑖 ) |
68 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑖 ≤ 𝑀 ) |
69 |
57 58 59 67 68
|
elfzd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
70 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
71 |
56 70
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
72 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
73 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 0 ∈ ℤ ) |
74 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
75 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑖 ∈ ℤ ) |
76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ℤ ) |
77 |
|
0red |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 0 ∈ ℝ ) |
78 |
75
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑖 ∈ ℝ ) |
79 |
|
1red |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 1 ∈ ℝ ) |
80 |
63
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 0 < 1 ) |
81 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 1 ≤ 𝑖 ) |
82 |
77 79 78 80 81
|
ltletrd |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 0 < 𝑖 ) |
83 |
77 78 82
|
ltled |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 0 ≤ 𝑖 ) |
84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 0 ≤ 𝑖 ) |
85 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
86 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
87 |
|
peano2rem |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) |
88 |
86 87
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑀 − 1 ) ∈ ℝ ) |
89 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑖 ≤ ( 𝑀 − 1 ) ) |
90 |
89
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ≤ ( 𝑀 − 1 ) ) |
91 |
86
|
ltm1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑀 − 1 ) < 𝑀 ) |
92 |
85 88 86 90 91
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 < 𝑀 ) |
93 |
85 86 92
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ≤ 𝑀 ) |
94 |
73 74 76 84 93
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
95 |
72 94
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
96 |
76
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 + 1 ) ∈ ℤ ) |
97 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 0 ∈ ℝ ) |
98 |
|
peano2re |
⊢ ( 𝑖 ∈ ℝ → ( 𝑖 + 1 ) ∈ ℝ ) |
99 |
85 98
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 + 1 ) ∈ ℝ ) |
100 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 1 ∈ ℝ ) |
101 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 0 < 1 ) |
102 |
78 98
|
syl |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → ( 𝑖 + 1 ) ∈ ℝ ) |
103 |
78
|
ltp1d |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑖 < ( 𝑖 + 1 ) ) |
104 |
79 78 102 81 103
|
lelttrd |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 1 < ( 𝑖 + 1 ) ) |
105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 1 < ( 𝑖 + 1 ) ) |
106 |
97 100 99 101 105
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 0 < ( 𝑖 + 1 ) ) |
107 |
97 99 106
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 0 ≤ ( 𝑖 + 1 ) ) |
108 |
85 88 100 90
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 + 1 ) ≤ ( ( 𝑀 − 1 ) + 1 ) ) |
109 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
110 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
111 |
109 110
|
npcand |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
112 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
113 |
108 112
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 + 1 ) ≤ 𝑀 ) |
114 |
73 74 96 107 113
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
115 |
72 114
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
116 |
|
elfzo |
⊢ ( ( 𝑖 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑖 ∧ 𝑖 < 𝑀 ) ) ) |
117 |
76 73 74 116
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑖 ∧ 𝑖 < 𝑀 ) ) ) |
118 |
84 92 117
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
119 |
118 46
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
120 |
95 115 119
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
121 |
55 71 120
|
monoord |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
122 |
121 23
|
breqtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) ≤ 𝐵 ) |
123 |
22 33 27 53 122
|
ltletrd |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
124 |
22 27 123
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |