Metamath Proof Explorer


Theorem fourierdlem110

Description: The integral of a piecewise continuous periodic function F is unchanged if the domain is shifted by any value X . This lemma generalizes fourierdlem92 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem110.a ( 𝜑𝐴 ∈ ℝ )
fourierdlem110.b ( 𝜑𝐵 ∈ ℝ )
fourierdlem110.t 𝑇 = ( 𝐵𝐴 )
fourierdlem110.x ( 𝜑𝑋 ∈ ℝ )
fourierdlem110.p 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
fourierdlem110.m ( 𝜑𝑀 ∈ ℕ )
fourierdlem110.q ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
fourierdlem110.f ( 𝜑𝐹 : ℝ ⟶ ℂ )
fourierdlem110.fper ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹𝑥 ) )
fourierdlem110.fcn ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) )
fourierdlem110.r ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄𝑖 ) ) )
fourierdlem110.l ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
Assertion fourierdlem110 ( 𝜑 → ∫ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ( 𝐹𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) d 𝑥 )

Proof

Step Hyp Ref Expression
1 fourierdlem110.a ( 𝜑𝐴 ∈ ℝ )
2 fourierdlem110.b ( 𝜑𝐵 ∈ ℝ )
3 fourierdlem110.t 𝑇 = ( 𝐵𝐴 )
4 fourierdlem110.x ( 𝜑𝑋 ∈ ℝ )
5 fourierdlem110.p 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
6 fourierdlem110.m ( 𝜑𝑀 ∈ ℕ )
7 fourierdlem110.q ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
8 fourierdlem110.f ( 𝜑𝐹 : ℝ ⟶ ℂ )
9 fourierdlem110.fper ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹𝑥 ) )
10 fourierdlem110.fcn ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) )
11 fourierdlem110.r ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄𝑖 ) ) )
12 fourierdlem110.l ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
13 eqid ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴𝑋 ) ∧ ( 𝑝𝑚 ) = ( 𝐵𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴𝑋 ) ∧ ( 𝑝𝑚 ) = ( 𝐵𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
14 oveq1 ( 𝑦 = 𝑥 → ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑥 + ( 𝑘 · 𝑇 ) ) )
15 14 eleq1d ( 𝑦 = 𝑥 → ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) )
16 15 rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) )
17 16 cbvrabv { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑥 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 }
18 17 uneq2i ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑥 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } )
19 oveq1 ( 𝑙 = 𝑘 → ( 𝑙 · 𝑇 ) = ( 𝑘 · 𝑇 ) )
20 19 oveq2d ( 𝑙 = 𝑘 → ( 𝑦 + ( 𝑙 · 𝑇 ) ) = ( 𝑦 + ( 𝑘 · 𝑇 ) ) )
21 20 eleq1d ( 𝑙 = 𝑘 → ( ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) )
22 21 cbvrexvw ( ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 )
23 22 a1i ( 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) → ( ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) )
24 23 rabbiia { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 }
25 24 uneq2i ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } )
26 25 fveq2i ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) = ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) )
27 26 oveq1i ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) = ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 )
28 isoeq5 ( ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) )
29 25 28 ax-mp ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) )
30 isoeq1 ( 𝑔 = 𝑓 → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) )
31 29 30 syl5bb ( 𝑔 = 𝑓 → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) )
32 31 cbviotavw ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴𝑋 ) , ( 𝐵𝑋 ) } ∪ { 𝑦 ∈ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) )
33 id ( 𝑦 = 𝑥𝑦 = 𝑥 )
34 oveq2 ( 𝑦 = 𝑥 → ( 𝐵𝑦 ) = ( 𝐵𝑥 ) )
35 34 oveq1d ( 𝑦 = 𝑥 → ( ( 𝐵𝑦 ) / 𝑇 ) = ( ( 𝐵𝑥 ) / 𝑇 ) )
36 35 fveq2d ( 𝑦 = 𝑥 → ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) )
37 36 oveq1d ( 𝑦 = 𝑥 → ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) )
38 33 37 oveq12d ( 𝑦 = 𝑥 → ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) )
39 38 cbvmptv ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) )
40 eqeq1 ( 𝑦 = 𝑤 → ( 𝑦 = 𝐵𝑤 = 𝐵 ) )
41 id ( 𝑦 = 𝑤𝑦 = 𝑤 )
42 40 41 ifbieq2d ( 𝑦 = 𝑤 → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) )
43 42 cbvmptv ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) = ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) )
44 fveq2 ( 𝑧 = 𝑥 → ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) = ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) )
45 44 fveq2d ( 𝑧 = 𝑥 → ( ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ‘ ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) ) = ( ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ‘ ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) )
46 45 breq2d ( 𝑧 = 𝑥 → ( ( 𝑄𝑗 ) ≤ ( ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ‘ ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) ) ↔ ( 𝑄𝑗 ) ≤ ( ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ‘ ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ) )
47 46 rabbidv ( 𝑧 = 𝑥 → { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑗 ) ≤ ( ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ‘ ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) ) } = { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑗 ) ≤ ( ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ‘ ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } )
48 47 supeq1d ( 𝑧 = 𝑥 → sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑗 ) ≤ ( ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ‘ ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) ) } , ℝ , < ) = sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑗 ) ≤ ( ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ‘ ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } , ℝ , < ) )
49 48 cbvmptv ( 𝑧 ∈ ℝ ↦ sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑗 ) ≤ ( ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ‘ ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) ) } , ℝ , < ) ) = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑗 ) ≤ ( ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ‘ ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } , ℝ , < ) )
50 1 2 3 4 5 6 7 8 9 10 11 12 13 18 27 32 39 43 49 fourierdlem109 ( 𝜑 → ∫ ( ( 𝐴𝑋 ) [,] ( 𝐵𝑋 ) ) ( 𝐹𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) d 𝑥 )