| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem111.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( cos ‘ ( 𝑛 · 𝑡 ) ) ) d 𝑡 / π ) ) |
| 2 |
|
fourierdlem111.b |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( sin ‘ ( 𝑛 · 𝑡 ) ) ) d 𝑡 / π ) ) |
| 3 |
|
fourierdlem111.s |
⊢ 𝑆 = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) |
| 4 |
|
fourierdlem111.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
| 5 |
|
fourierdlem111.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑚 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 6 |
|
fourierdlem111.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 7 |
|
fourierdlem111.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 8 |
|
fourierdlem111.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 9 |
|
fourierdlem111.6 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 10 |
|
fourierdlem111.fper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 11 |
|
fourierdlem111.g |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 12 |
|
fourierdlem111.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 13 |
|
fourierdlem111.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 14 |
|
fourierdlem111.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 15 |
|
fourierdlem111.t |
⊢ 𝑇 = ( 2 · π ) |
| 16 |
|
fourierdlem111.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( π − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 17 |
|
fourierdlem111.14 |
⊢ 𝑊 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
| 18 |
|
eleq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ ) ) |
| 19 |
18
|
anbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑛 ∈ ℕ ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑆 ‘ 𝑘 ) = ( 𝑆 ‘ 𝑛 ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐷 ‘ 𝑘 ) = ( 𝐷 ‘ 𝑛 ) ) |
| 22 |
21
|
fveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑘 = 𝑛 ∧ 𝑡 ∈ ( - π (,) π ) ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 25 |
24
|
itgeq2dv |
⊢ ( 𝑘 = 𝑛 → ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) |
| 26 |
20 25
|
eqeq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑆 ‘ 𝑘 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ↔ ( 𝑆 ‘ 𝑛 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) ) |
| 27 |
19 26
|
imbi12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) ↔ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) ) ) |
| 28 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 29 |
|
eqid |
⊢ ( - π (,) π ) = ( - π (,) π ) |
| 30 |
|
ioossre |
⊢ ( - π (,) π ) ⊆ ℝ |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → ( - π (,) π ) ⊆ ℝ ) |
| 32 |
9 31
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π (,) π ) ) = ( 𝑥 ∈ ( - π (,) π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 |
|
ioossicc |
⊢ ( - π (,) π ) ⊆ ( - π [,] π ) |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → ( - π (,) π ) ⊆ ( - π [,] π ) ) |
| 35 |
|
ioombl |
⊢ ( - π (,) π ) ∈ dom vol |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → ( - π (,) π ) ∈ dom vol ) |
| 37 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 38 |
|
pire |
⊢ π ∈ ℝ |
| 39 |
38
|
renegcli |
⊢ - π ∈ ℝ |
| 40 |
39 38
|
elicc2i |
⊢ ( 𝑡 ∈ ( - π [,] π ) ↔ ( 𝑡 ∈ ℝ ∧ - π ≤ 𝑡 ∧ 𝑡 ≤ π ) ) |
| 41 |
40
|
simp1bi |
⊢ ( 𝑡 ∈ ( - π [,] π ) → 𝑡 ∈ ℝ ) |
| 42 |
41
|
ssriv |
⊢ ( - π [,] π ) ⊆ ℝ |
| 43 |
42
|
a1i |
⊢ ( 𝜑 → ( - π [,] π ) ⊆ ℝ ) |
| 44 |
43
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝑥 ∈ ℝ ) |
| 45 |
37 44
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 46 |
9 43
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π [,] π ) ) = ( 𝑥 ∈ ( - π [,] π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 47 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 48 |
47
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 49 |
9 48
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 50 |
49 43
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π [,] π ) ) : ( - π [,] π ) ⟶ ℂ ) |
| 51 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 52 |
39
|
rexri |
⊢ - π ∈ ℝ* |
| 53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ* ) |
| 54 |
38
|
rexri |
⊢ π ∈ ℝ* |
| 55 |
54
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ* ) |
| 56 |
5 6 7
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 58 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 59 |
53 55 57 58
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 60 |
51 59
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 61 |
60
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 62 |
61 12
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 63 |
61
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 64 |
13 63
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 65 |
61
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 66 |
14 65
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 67 |
5 6 7 50 62 64 66
|
fourierdlem69 |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π [,] π ) ) ∈ 𝐿1 ) |
| 68 |
46 67
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 69 |
34 36 45 68
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π (,) π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 70 |
32 69
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π (,) π ) ) ∈ 𝐿1 ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ↾ ( - π (,) π ) ) ∈ 𝐿1 ) |
| 72 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑋 ∈ ℝ ) |
| 73 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 74 |
28 29 71 1 2 72 3 4 73
|
fourierdlem83 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) |
| 75 |
27 74
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) |
| 76 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - π ∈ ℝ ) |
| 77 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ℝ ) |
| 78 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 79 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → 𝑡 ∈ ℝ ) |
| 80 |
78 79
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 81 |
80
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 82 |
4
|
dirkerf |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 83 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 84 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → 𝑋 ∈ ℝ ) |
| 85 |
79 84
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
| 86 |
85
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
| 87 |
83 86
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℝ ) |
| 88 |
87
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℂ ) |
| 89 |
81 88
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ℂ ) |
| 90 |
76 77 89
|
itgioo |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( - π [,] π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) |
| 91 |
|
fvres |
⊢ ( 𝑡 ∈ ( - π [,] π ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 92 |
91
|
eqcomd |
⊢ ( 𝑡 ∈ ( - π [,] π ) → ( 𝐹 ‘ 𝑡 ) = ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) ) |
| 93 |
92
|
oveq1d |
⊢ ( 𝑡 ∈ ( - π [,] π ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 94 |
93
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 95 |
94
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π [,] π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( - π [,] π ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) |
| 96 |
|
simpl |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → 𝑛 = 𝑚 ) |
| 97 |
96
|
oveq2d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( 2 · 𝑛 ) = ( 2 · 𝑚 ) ) |
| 98 |
97
|
oveq1d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑚 ) + 1 ) ) |
| 99 |
98
|
oveq1d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) = ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) ) |
| 100 |
96
|
oveq1d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 + ( 1 / 2 ) ) = ( 𝑚 + ( 1 / 2 ) ) ) |
| 101 |
100
|
oveq1d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) = ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) |
| 102 |
101
|
fveq2d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) = ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) ) |
| 103 |
102
|
oveq1d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) = ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) |
| 104 |
99 103
|
ifeq12d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) = if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) |
| 105 |
104
|
mpteq2dva |
⊢ ( 𝑛 = 𝑚 → ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
| 106 |
105
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
| 107 |
4 106
|
eqtri |
⊢ 𝐷 = ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
| 108 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑠 ) = ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) ) |
| 109 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 − 𝑋 ) = ( 𝑡 − 𝑋 ) ) |
| 110 |
109
|
fveq2d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 111 |
108 110
|
oveq12d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑠 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 − 𝑋 ) ) ) = ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 112 |
111
|
cbvmptv |
⊢ ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑠 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 − 𝑋 ) ) ) ) = ( 𝑡 ∈ ( - π [,] π ) ↦ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 113 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 114 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
| 115 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 116 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ ℝ ) |
| 117 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ↾ ( - π [,] π ) ) : ( - π [,] π ) ⟶ ℂ ) |
| 118 |
62
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 119 |
64
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 120 |
66
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 121 |
107 5 112 113 114 115 116 117 118 119 120
|
fourierdlem101 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π [,] π ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 ) |
| 122 |
|
oveq2 |
⊢ ( 𝑠 = 𝑦 → ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝑦 ) ) |
| 123 |
122
|
fveq2d |
⊢ ( 𝑠 = 𝑦 → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
| 124 |
|
fveq2 |
⊢ ( 𝑠 = 𝑦 → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) |
| 125 |
123 124
|
oveq12d |
⊢ ( 𝑠 = 𝑦 → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 126 |
125
|
cbvitgv |
⊢ ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 |
| 127 |
126
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 ) |
| 128 |
39
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
| 129 |
128 8
|
resubcld |
⊢ ( 𝜑 → ( - π − 𝑋 ) ∈ ℝ ) |
| 130 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( - π − 𝑋 ) ∈ ℝ ) |
| 131 |
38
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
| 132 |
131 8
|
resubcld |
⊢ ( 𝜑 → ( π − 𝑋 ) ∈ ℝ ) |
| 133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( π − 𝑋 ) ∈ ℝ ) |
| 134 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 135 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑋 ∈ ℝ ) |
| 136 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) |
| 137 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( - π − 𝑋 ) ∈ ℝ ) |
| 138 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( π − 𝑋 ) ∈ ℝ ) |
| 139 |
|
elicc2 |
⊢ ( ( ( - π − 𝑋 ) ∈ ℝ ∧ ( π − 𝑋 ) ∈ ℝ ) → ( 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( - π − 𝑋 ) ≤ 𝑦 ∧ 𝑦 ≤ ( π − 𝑋 ) ) ) ) |
| 140 |
137 138 139
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( - π − 𝑋 ) ≤ 𝑦 ∧ 𝑦 ≤ ( π − 𝑋 ) ) ) ) |
| 141 |
136 140
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑦 ∈ ℝ ∧ ( - π − 𝑋 ) ≤ 𝑦 ∧ 𝑦 ≤ ( π − 𝑋 ) ) ) |
| 142 |
141
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑦 ∈ ℝ ) |
| 143 |
135 142
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑦 ) ∈ ℝ ) |
| 144 |
134 143
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ∈ ℂ ) |
| 145 |
144
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ∈ ℂ ) |
| 146 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 147 |
142
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑦 ∈ ℝ ) |
| 148 |
146 147
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℝ ) |
| 149 |
148
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℂ ) |
| 150 |
145 149
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ ℂ ) |
| 151 |
130 133 150
|
itgioo |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 ) |
| 152 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → - π ∈ ℝ ) |
| 153 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → π ∈ ℝ ) |
| 154 |
8
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 155 |
131
|
recnd |
⊢ ( 𝜑 → π ∈ ℂ ) |
| 156 |
155
|
negcld |
⊢ ( 𝜑 → - π ∈ ℂ ) |
| 157 |
154 156
|
pncan3d |
⊢ ( 𝜑 → ( 𝑋 + ( - π − 𝑋 ) ) = - π ) |
| 158 |
157
|
eqcomd |
⊢ ( 𝜑 → - π = ( 𝑋 + ( - π − 𝑋 ) ) ) |
| 159 |
158
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → - π = ( 𝑋 + ( - π − 𝑋 ) ) ) |
| 160 |
141
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( - π − 𝑋 ) ≤ 𝑦 ) |
| 161 |
137 142 135 160
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + ( - π − 𝑋 ) ) ≤ ( 𝑋 + 𝑦 ) ) |
| 162 |
159 161
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → - π ≤ ( 𝑋 + 𝑦 ) ) |
| 163 |
141
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑦 ≤ ( π − 𝑋 ) ) |
| 164 |
142 138 135 163
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑦 ) ≤ ( 𝑋 + ( π − 𝑋 ) ) ) |
| 165 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑋 ∈ ℂ ) |
| 166 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → π ∈ ℂ ) |
| 167 |
165 166
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + ( π − 𝑋 ) ) = π ) |
| 168 |
164 167
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑦 ) ≤ π ) |
| 169 |
152 153 143 162 168
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑦 ) ∈ ( - π [,] π ) ) |
| 170 |
|
fvres |
⊢ ( ( 𝑋 + 𝑦 ) ∈ ( - π [,] π ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
| 171 |
169 170
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
| 172 |
171
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) = ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) ) |
| 173 |
172
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) = ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) ) |
| 174 |
173
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 175 |
174
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 ) |
| 176 |
127 151 175
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
| 177 |
121 176
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π [,] π ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
| 178 |
90 95 177
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
| 179 |
|
elioore |
⊢ ( 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) → 𝑠 ∈ ℝ ) |
| 180 |
179
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
| 181 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 182 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → 𝑋 ∈ ℝ ) |
| 183 |
179
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
| 184 |
182 183
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 185 |
181 184
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 186 |
185
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 187 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 188 |
187 180
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
| 189 |
188
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℂ ) |
| 190 |
186 189
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
| 191 |
|
oveq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝑋 + 𝑥 ) = ( 𝑋 + 𝑠 ) ) |
| 192 |
191
|
fveq2d |
⊢ ( 𝑥 = 𝑠 → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 193 |
|
fveq2 |
⊢ ( 𝑥 = 𝑠 → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
| 194 |
192 193
|
oveq12d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 195 |
194
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) = ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 196 |
11 195
|
eqtri |
⊢ 𝐺 = ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 197 |
196
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ℝ ∧ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 198 |
180 190 197
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 199 |
198
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
| 200 |
199
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑠 ) d 𝑠 ) |
| 201 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
| 202 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑋 ∈ ℝ ) |
| 203 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 204 |
202 203
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑋 + 𝑥 ) ∈ ℝ ) |
| 205 |
201 204
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ∈ ℂ ) |
| 206 |
205
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ∈ ℂ ) |
| 207 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 208 |
207
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 209 |
208
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 210 |
206 209
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ ℂ ) |
| 211 |
210 11
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 : ℝ ⟶ ℂ ) |
| 212 |
211
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝐺 : ℝ ⟶ ℂ ) |
| 213 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( - π − 𝑋 ) ∈ ℝ ) |
| 214 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( π − 𝑋 ) ∈ ℝ ) |
| 215 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) |
| 216 |
|
eliccre |
⊢ ( ( ( - π − 𝑋 ) ∈ ℝ ∧ ( π − 𝑋 ) ∈ ℝ ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
| 217 |
213 214 215 216
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
| 218 |
217
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
| 219 |
212 218
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) |
| 220 |
130 133 219
|
itgioo |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑠 ) d 𝑠 ) |
| 221 |
|
fveq2 |
⊢ ( 𝑠 = 𝑥 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 222 |
221
|
cbvitgv |
⊢ ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 |
| 223 |
220 222
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 224 |
200 223
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 225 |
|
eqid |
⊢ ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) = ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) |
| 226 |
116
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - 𝑋 ∈ ℝ ) |
| 227 |
5
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 228 |
6 227
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 229 |
7 228
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 230 |
229
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 231 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 232 |
230 231
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 233 |
232
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 234 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑋 ∈ ℝ ) |
| 235 |
233 234
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
| 236 |
235 17
|
fmptd |
⊢ ( 𝜑 → 𝑊 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 237 |
|
reex |
⊢ ℝ ∈ V |
| 238 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
| 239 |
237 238
|
pm3.2i |
⊢ ( ℝ ∈ V ∧ ( 0 ... 𝑀 ) ∈ V ) |
| 240 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ ( 0 ... 𝑀 ) ∈ V ) → ( 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑊 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) |
| 241 |
239 240
|
mp1i |
⊢ ( 𝜑 → ( 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑊 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) |
| 242 |
236 241
|
mpbird |
⊢ ( 𝜑 → 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 243 |
17
|
a1i |
⊢ ( 𝜑 → 𝑊 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) ) |
| 244 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 0 ) ) |
| 245 |
229
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 246 |
245
|
simpld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ) |
| 247 |
246
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = - π ) |
| 248 |
244 247
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( 𝑄 ‘ 𝑖 ) = - π ) |
| 249 |
248
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( - π − 𝑋 ) ) |
| 250 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 251 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 252 |
|
0red |
⊢ ( 𝑀 ∈ ℕ → 0 ∈ ℝ ) |
| 253 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
| 254 |
|
nngt0 |
⊢ ( 𝑀 ∈ ℕ → 0 < 𝑀 ) |
| 255 |
252 253 254
|
ltled |
⊢ ( 𝑀 ∈ ℕ → 0 ≤ 𝑀 ) |
| 256 |
6 255
|
syl |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
| 257 |
|
eluz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ) ) |
| 258 |
250 251 256 257
|
syl3anbrc |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 259 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
| 260 |
258 259
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
| 261 |
243 249 260 129
|
fvmptd |
⊢ ( 𝜑 → ( 𝑊 ‘ 0 ) = ( - π − 𝑋 ) ) |
| 262 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
| 263 |
246
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = π ) |
| 264 |
262 263
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) = π ) |
| 265 |
264
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝑀 ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( π − 𝑋 ) ) |
| 266 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 267 |
258 266
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 268 |
243 265 267 132
|
fvmptd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝑀 ) = ( π − 𝑋 ) ) |
| 269 |
261 268
|
jca |
⊢ ( 𝜑 → ( ( 𝑊 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑊 ‘ 𝑀 ) = ( π − 𝑋 ) ) ) |
| 270 |
232
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 271 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 272 |
271
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 273 |
270 272
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 274 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 275 |
274
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 276 |
270 275
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 277 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℝ ) |
| 278 |
245
|
simprd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 279 |
278
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 280 |
273 276 277 279
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 281 |
272 235
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
| 282 |
17
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) → ( 𝑊 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
| 283 |
272 281 282
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
| 284 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
| 285 |
284
|
oveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) |
| 286 |
285
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) |
| 287 |
17 286
|
eqtri |
⊢ 𝑊 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) |
| 288 |
287
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑊 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) ) |
| 289 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 290 |
289
|
oveq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 291 |
290
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 = ( 𝑖 + 1 ) ) → ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 292 |
276 277
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
| 293 |
288 291 275 292
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 294 |
280 283 293
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
| 295 |
294
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
| 296 |
242 269 295
|
jca32 |
⊢ ( 𝜑 → ( 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑊 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑊 ‘ 𝑀 ) = ( π − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 297 |
16
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑊 ∈ ( 𝑂 ‘ 𝑀 ) ↔ ( 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑊 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑊 ‘ 𝑀 ) = ( π − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 298 |
6 297
|
syl |
⊢ ( 𝜑 → ( 𝑊 ∈ ( 𝑂 ‘ 𝑀 ) ↔ ( 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑊 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑊 ‘ 𝑀 ) = ( π − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 299 |
296 298
|
mpbird |
⊢ ( 𝜑 → 𝑊 ∈ ( 𝑂 ‘ 𝑀 ) ) |
| 300 |
299
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑊 ∈ ( 𝑂 ‘ 𝑀 ) ) |
| 301 |
155 156 154
|
nnncan2d |
⊢ ( 𝜑 → ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) = ( π − - π ) ) |
| 302 |
|
picn |
⊢ π ∈ ℂ |
| 303 |
302
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
| 304 |
302 302
|
subnegi |
⊢ ( π − - π ) = ( π + π ) |
| 305 |
303 15 304
|
3eqtr4i |
⊢ 𝑇 = ( π − - π ) |
| 306 |
301 305
|
eqtr4di |
⊢ ( 𝜑 → ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) = 𝑇 ) |
| 307 |
306
|
oveq2d |
⊢ ( 𝜑 → ( 𝑥 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) = ( 𝑥 + 𝑇 ) ) |
| 308 |
307
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑥 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 309 |
308
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑥 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 310 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 311 |
11
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ ℂ ) → ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 312 |
310 210 311
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 313 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑋 ∈ ℂ ) |
| 314 |
203
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 315 |
|
2re |
⊢ 2 ∈ ℝ |
| 316 |
315 38
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
| 317 |
15 316
|
eqeltri |
⊢ 𝑇 ∈ ℝ |
| 318 |
317
|
a1i |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 319 |
318
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 320 |
319
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
| 321 |
313 314 320
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑋 + 𝑥 ) + 𝑇 ) = ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) |
| 322 |
321
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑋 + ( 𝑥 + 𝑇 ) ) = ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) |
| 323 |
322
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) = ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) ) |
| 324 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝜑 ) |
| 325 |
324 204
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝜑 ∧ ( 𝑋 + 𝑥 ) ∈ ℝ ) ) |
| 326 |
|
eleq1 |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( 𝑠 ∈ ℝ ↔ ( 𝑋 + 𝑥 ) ∈ ℝ ) ) |
| 327 |
326
|
anbi2d |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ↔ ( 𝜑 ∧ ( 𝑋 + 𝑥 ) ∈ ℝ ) ) ) |
| 328 |
|
oveq1 |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( 𝑠 + 𝑇 ) = ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) |
| 329 |
328
|
fveq2d |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) ) |
| 330 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) |
| 331 |
329 330
|
eqeq12d |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ 𝑠 ) ↔ ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) |
| 332 |
327 331
|
imbi12d |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ 𝑠 ) ) ↔ ( ( 𝜑 ∧ ( 𝑋 + 𝑥 ) ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) ) |
| 333 |
|
eleq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 ∈ ℝ ↔ 𝑠 ∈ ℝ ) ) |
| 334 |
333
|
anbi2d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ↔ ( 𝜑 ∧ 𝑠 ∈ ℝ ) ) ) |
| 335 |
|
oveq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 + 𝑇 ) = ( 𝑠 + 𝑇 ) ) |
| 336 |
335
|
fveq2d |
⊢ ( 𝑥 = 𝑠 → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) ) |
| 337 |
|
fveq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑠 ) ) |
| 338 |
336 337
|
eqeq12d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ 𝑠 ) ) ) |
| 339 |
334 338
|
imbi12d |
⊢ ( 𝑥 = 𝑠 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ 𝑠 ) ) ) ) |
| 340 |
339 10
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ 𝑠 ) ) |
| 341 |
332 340
|
vtoclg |
⊢ ( ( 𝑋 + 𝑥 ) ∈ ℝ → ( ( 𝜑 ∧ ( 𝑋 + 𝑥 ) ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) |
| 342 |
204 325 341
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) |
| 343 |
323 342
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) ) |
| 344 |
343
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) ) |
| 345 |
4 15
|
dirkerper |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 346 |
345
|
eqcomd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) |
| 347 |
346
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) |
| 348 |
344 347
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) ) |
| 349 |
196
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐺 = ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
| 350 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( 𝑋 + 𝑠 ) = ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) |
| 351 |
350
|
fveq2d |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) ) |
| 352 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) |
| 353 |
351 352
|
oveq12d |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) ) |
| 354 |
353
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑠 = ( 𝑥 + 𝑇 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) ) |
| 355 |
317
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 356 |
310 355
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
| 357 |
317
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 358 |
203 357
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
| 359 |
202 358
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑋 + ( 𝑥 + 𝑇 ) ) ∈ ℝ ) |
| 360 |
201 359
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) ∈ ℂ ) |
| 361 |
360
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) ∈ ℂ ) |
| 362 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 363 |
362 356
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ∈ ℝ ) |
| 364 |
363
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ∈ ℂ ) |
| 365 |
361 364
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) ∈ ℂ ) |
| 366 |
349 354 356 365
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) ) |
| 367 |
366
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 368 |
312 348 367
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 369 |
309 368
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑥 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 370 |
196
|
reseq1i |
⊢ ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 371 |
370
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 372 |
|
ioossre |
⊢ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
| 373 |
|
resmpt |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ → ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
| 374 |
372 373
|
ax-mp |
⊢ ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 375 |
371 374
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
| 376 |
273
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 377 |
376
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 378 |
276
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 379 |
378
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 380 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 381 |
|
elioore |
⊢ ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ℝ ) |
| 382 |
381
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
| 383 |
380 382
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 384 |
383
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 385 |
|
eleq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 386 |
385
|
anbi2d |
⊢ ( 𝑥 = 𝑠 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 387 |
191
|
breq2d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑥 ) ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑠 ) ) ) |
| 388 |
386 387
|
imbi12d |
⊢ ( 𝑥 = 𝑠 → ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑥 ) ) ↔ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑠 ) ) ) ) |
| 389 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℂ ) |
| 390 |
283 281
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ ) |
| 391 |
390
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℂ ) |
| 392 |
389 391
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝑊 ‘ 𝑖 ) + 𝑋 ) ) |
| 393 |
283
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) + 𝑋 ) = ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) + 𝑋 ) ) |
| 394 |
273
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
| 395 |
394 389
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) + 𝑋 ) = ( 𝑄 ‘ 𝑖 ) ) |
| 396 |
392 393 395
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
| 397 |
396
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
| 398 |
390
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ ) |
| 399 |
|
elioore |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ∈ ℝ ) |
| 400 |
399
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 401 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 402 |
390
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ) |
| 403 |
402
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ) |
| 404 |
293 292
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 405 |
404
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 406 |
405
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 407 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 408 |
|
ioogtlb |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) < 𝑥 ) |
| 409 |
403 406 407 408
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) < 𝑥 ) |
| 410 |
398 400 401 409
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) < ( 𝑋 + 𝑥 ) ) |
| 411 |
397 410
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑥 ) ) |
| 412 |
388 411
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑠 ) ) |
| 413 |
191
|
breq1d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑋 + 𝑥 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑋 + 𝑠 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 414 |
386 413
|
imbi12d |
⊢ ( 𝑥 = 𝑠 → ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 415 |
404
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 416 |
|
iooltub |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
| 417 |
403 406 407 416
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
| 418 |
400 415 401 417
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) < ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 419 |
404
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
| 420 |
389 419
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑊 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) ) |
| 421 |
293
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) = ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) + 𝑋 ) ) |
| 422 |
276
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
| 423 |
422 389
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) + 𝑋 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 424 |
420 421 423
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 425 |
424
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 426 |
418 425
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 427 |
414 426
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 428 |
377 379 384 412 427
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 429 |
191
|
cbvmptv |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) |
| 430 |
429
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ) |
| 431 |
|
ioossre |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
| 432 |
431
|
a1i |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 433 |
9 432
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 434 |
433
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 435 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 436 |
428 430 434 435
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) |
| 437 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) |
| 438 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 439 |
438
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 440 |
439 154 439
|
constcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝑋 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 441 |
|
cncfmptid |
⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 442 |
438 438 441
|
mp2an |
⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) |
| 443 |
442
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 444 |
440 443
|
addcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 445 |
444
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 446 |
|
ioosscn |
⊢ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
| 447 |
446
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 448 |
|
ioosscn |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
| 449 |
448
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 450 |
376
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 451 |
378
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 452 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 453 |
399
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 454 |
452 453
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ℝ ) |
| 455 |
454
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ℝ ) |
| 456 |
450 451 455 411 426
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 457 |
437 445 447 449 456
|
cncfmptssg |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 458 |
457 12
|
cncfco |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 459 |
436 458
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 460 |
459
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 461 |
|
eqid |
⊢ ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
| 462 |
82
|
feqmptd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) = ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 463 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) ) |
| 464 |
47 438 463
|
mp2an |
⊢ ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) |
| 465 |
4
|
dirkercncf |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℝ ) ) |
| 466 |
464 465
|
sselid |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℂ ) ) |
| 467 |
462 466
|
eqeltrrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℂ ) ) |
| 468 |
372
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 469 |
438
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ℂ ⊆ ℂ ) |
| 470 |
|
cncff |
⊢ ( ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℂ ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) |
| 471 |
466 470
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) |
| 472 |
471
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) |
| 473 |
381
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
| 474 |
472 473
|
ffvelcdmd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℂ ) |
| 475 |
461 467 468 469 474
|
cncfmptssg |
⊢ ( 𝑛 ∈ ℕ → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 476 |
475
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 477 |
460 476
|
mulcncf |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 478 |
375 477
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 479 |
453 205
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ∈ ℂ ) |
| 480 |
479
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ∈ ℂ ) |
| 481 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) |
| 482 |
480 481
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 483 |
482
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 484 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 485 |
372
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 486 |
484 485
|
fssresd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
| 487 |
47
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ℝ ⊆ ℂ ) |
| 488 |
486 487
|
fssd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 489 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) |
| 490 |
|
fdm |
⊢ ( 𝐹 : ℝ ⟶ ℂ → dom 𝐹 = ℝ ) |
| 491 |
49 490
|
syl |
⊢ ( 𝜑 → dom 𝐹 = ℝ ) |
| 492 |
431 491
|
sseqtrrid |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
| 493 |
|
ssdmres |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 494 |
492 493
|
sylib |
⊢ ( 𝜑 → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 495 |
494
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 496 |
495
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 497 |
456 496
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 498 |
273
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 499 |
498 411
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ≠ ( 𝑄 ‘ 𝑖 ) ) |
| 500 |
|
eldifsn |
⊢ ( ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ↔ ( ( 𝑋 + 𝑥 ) ∈ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑋 + 𝑥 ) ≠ ( 𝑄 ‘ 𝑖 ) ) ) |
| 501 |
497 499 500
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 502 |
501
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 503 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) |
| 504 |
503
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) → ran ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 505 |
502 504
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ran ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 506 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) |
| 507 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑊 ‘ 𝑖 ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
| 508 |
507
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑊 ‘ 𝑖 ) ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
| 509 |
390
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ≤ ( 𝑊 ‘ 𝑖 ) ) |
| 510 |
390 404 294
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ≤ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
| 511 |
390 404 390 509 510
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 512 |
396 273
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ∈ ℝ ) |
| 513 |
506 508 511 512
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
| 514 |
396
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) = ( 𝑄 ‘ 𝑖 ) ) |
| 515 |
513 514
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) |
| 516 |
390 404
|
iccssred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 517 |
516 47
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 518 |
517
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) |
| 519 |
|
rescncf |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) ) |
| 520 |
517 445 519
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 521 |
518 520
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 522 |
521 511
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 523 |
515 522
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 524 |
|
ioossicc |
⊢ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
| 525 |
|
resmpt |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) |
| 526 |
524 525
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) |
| 527 |
526
|
eqcomi |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 528 |
527
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 529 |
528
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 530 |
154
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℂ ) |
| 531 |
390
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ ) |
| 532 |
404
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 533 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 534 |
|
eliccre |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 535 |
531 532 533 534
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 536 |
535
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℂ ) |
| 537 |
530 536
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ℂ ) |
| 538 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) |
| 539 |
537 538
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) : ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 540 |
390 404 294 539
|
limciccioolb |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 541 |
529 540
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 542 |
523 541
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 543 |
505 542 13
|
limccog |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 544 |
49 432
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 545 |
544
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 546 |
456 503
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 547 |
|
fcompt |
⊢ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ∧ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) = ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
| 548 |
545 546 547
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) = ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
| 549 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) |
| 550 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑋 + 𝑥 ) = ( 𝑋 + 𝑦 ) ) |
| 551 |
550
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + 𝑦 ) ) |
| 552 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 553 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 554 |
372 552
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 ∈ ℝ ) |
| 555 |
553 554
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑦 ) ∈ ℝ ) |
| 556 |
549 551 552 555
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) = ( 𝑋 + 𝑦 ) ) |
| 557 |
556
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑦 ) ) ) |
| 558 |
557
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑦 ) ) ) |
| 559 |
376
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 560 |
378
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 561 |
555
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑦 ) ∈ ℝ ) |
| 562 |
396
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
| 563 |
390
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ ) |
| 564 |
554
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 ∈ ℝ ) |
| 565 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 566 |
402
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ) |
| 567 |
405
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 568 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 569 |
|
ioogtlb |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) < 𝑦 ) |
| 570 |
566 567 568 569
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) < 𝑦 ) |
| 571 |
563 564 565 570
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) < ( 𝑋 + 𝑦 ) ) |
| 572 |
562 571
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑦 ) ) |
| 573 |
404
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 574 |
|
iooltub |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
| 575 |
566 567 568 574
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
| 576 |
564 573 565 575
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑦 ) < ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 577 |
424
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 578 |
576 577
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑦 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 579 |
559 560 561 572 578
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑦 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 580 |
|
fvres |
⊢ ( ( 𝑋 + 𝑦 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
| 581 |
579 580
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
| 582 |
558 581
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
| 583 |
582
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) ) |
| 584 |
550
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
| 585 |
584
|
cbvmptv |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) = ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
| 586 |
583 585
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) |
| 587 |
548 586
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) |
| 588 |
587
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 589 |
543 588
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 590 |
589
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 591 |
|
fvres |
⊢ ( ( 𝑊 ‘ 𝑖 ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) |
| 592 |
511 591
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) |
| 593 |
592
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) |
| 594 |
593
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) |
| 595 |
516
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 596 |
465
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℝ ) ) |
| 597 |
|
rescncf |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ → ( ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ) ) |
| 598 |
595 596 597
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ) |
| 599 |
511
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 600 |
598 599
|
cnlimci |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ∈ ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 601 |
594 600
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ∈ ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 602 |
524
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 603 |
602
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 604 |
603
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 605 |
604
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 606 |
605
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 607 |
390
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ ) |
| 608 |
404
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 609 |
294
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
| 610 |
471
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) |
| 611 |
610 595
|
fssresd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 612 |
607 608 609 611
|
limciccioolb |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 613 |
606 612
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 614 |
601 613
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ∈ ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 615 |
483 488 489 590 614
|
mullimcf |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 616 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) |
| 617 |
192
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑥 = 𝑠 ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 618 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 619 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 620 |
619 383
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 621 |
620
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 622 |
616 617 618 621
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 623 |
622
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 624 |
|
fvres |
⊢ ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
| 625 |
624
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
| 626 |
623 625
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 627 |
626
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) |
| 628 |
627
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) ) |
| 629 |
375 628
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) = ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 630 |
629
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 631 |
615 630
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) ∈ ( ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
| 632 |
455 426
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ≠ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 633 |
|
eldifsn |
⊢ ( ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↔ ( ( 𝑋 + 𝑥 ) ∈ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑋 + 𝑥 ) ≠ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 634 |
497 632 633
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 635 |
634
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 636 |
503
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) → ran ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 637 |
635 636
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ran ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 638 |
404
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
| 639 |
390 404 404 510 638
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 640 |
521 639
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 641 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑊 ‘ ( 𝑖 + 1 ) ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 642 |
641
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 643 |
277 404
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ∈ ℝ ) |
| 644 |
506 642 639 643
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 645 |
644 424
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 646 |
528
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 647 |
390 404 294 539
|
limcicciooub |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 648 |
646 647
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 649 |
640 645 648
|
3eltr3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 650 |
637 649 14
|
limccog |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 651 |
587
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 652 |
650 651
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 653 |
652
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 654 |
639
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 655 |
598 654
|
cnlimci |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 656 |
|
fvres |
⊢ ( ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 657 |
654 656
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 658 |
607 608 609 611
|
limcicciooub |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 659 |
658
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 660 |
|
resabs1 |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 661 |
524 660
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 662 |
661
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 663 |
659 662
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 664 |
655 657 663
|
3eltr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 665 |
483 488 489 653 664
|
mullimcf |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐿 · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 666 |
629
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 667 |
665 666
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐿 · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
| 668 |
130 133 225 226 16 114 300 211 369 478 631 667
|
fourierdlem110 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( ( - π − 𝑋 ) − - 𝑋 ) [,] ( ( π − 𝑋 ) − - 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 669 |
668
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( ( ( - π − 𝑋 ) − - 𝑋 ) [,] ( ( π − 𝑋 ) − - 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 670 |
129
|
recnd |
⊢ ( 𝜑 → ( - π − 𝑋 ) ∈ ℂ ) |
| 671 |
670 154
|
subnegd |
⊢ ( 𝜑 → ( ( - π − 𝑋 ) − - 𝑋 ) = ( ( - π − 𝑋 ) + 𝑋 ) ) |
| 672 |
156 154
|
npcand |
⊢ ( 𝜑 → ( ( - π − 𝑋 ) + 𝑋 ) = - π ) |
| 673 |
671 672
|
eqtrd |
⊢ ( 𝜑 → ( ( - π − 𝑋 ) − - 𝑋 ) = - π ) |
| 674 |
132
|
recnd |
⊢ ( 𝜑 → ( π − 𝑋 ) ∈ ℂ ) |
| 675 |
674 154
|
subnegd |
⊢ ( 𝜑 → ( ( π − 𝑋 ) − - 𝑋 ) = ( ( π − 𝑋 ) + 𝑋 ) ) |
| 676 |
155 154
|
npcand |
⊢ ( 𝜑 → ( ( π − 𝑋 ) + 𝑋 ) = π ) |
| 677 |
675 676
|
eqtrd |
⊢ ( 𝜑 → ( ( π − 𝑋 ) − - 𝑋 ) = π ) |
| 678 |
673 677
|
oveq12d |
⊢ ( 𝜑 → ( ( ( - π − 𝑋 ) − - 𝑋 ) [,] ( ( π − 𝑋 ) − - 𝑋 ) ) = ( - π [,] π ) ) |
| 679 |
678
|
itgeq1d |
⊢ ( 𝜑 → ∫ ( ( ( - π − 𝑋 ) − - 𝑋 ) [,] ( ( π − 𝑋 ) − - 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 680 |
679
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( ( - π − 𝑋 ) − - 𝑋 ) [,] ( ( π − 𝑋 ) − - 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 681 |
669 680
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 682 |
|
fveq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 683 |
682
|
cbvitgv |
⊢ ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑠 ) d 𝑠 |
| 684 |
211
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝐺 : ℝ ⟶ ℂ ) |
| 685 |
44
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝑥 ∈ ℝ ) |
| 686 |
684 685
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( - π [,] π ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 687 |
76 77 686
|
itgioo |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 688 |
|
elioore |
⊢ ( 𝑠 ∈ ( - π (,) π ) → 𝑠 ∈ ℝ ) |
| 689 |
688
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → 𝑠 ∈ ℝ ) |
| 690 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π (,) π ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 691 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π (,) π ) ) → 𝑋 ∈ ℝ ) |
| 692 |
688
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π (,) π ) ) → 𝑠 ∈ ℝ ) |
| 693 |
691 692
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π (,) π ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 694 |
690 693
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π (,) π ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 695 |
694
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 696 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 697 |
696 689
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
| 698 |
697
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℂ ) |
| 699 |
695 698
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
| 700 |
689 699 197
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 701 |
700
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
| 702 |
683 687 701
|
3eqtr3a |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
| 703 |
224 681 702
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
| 704 |
75 178 703
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
| 705 |
77
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - π ∈ ℝ ) |
| 706 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ℝ ) |
| 707 |
|
0re |
⊢ 0 ∈ ℝ |
| 708 |
|
negpilt0 |
⊢ - π < 0 |
| 709 |
39 707 708
|
ltleii |
⊢ - π ≤ 0 |
| 710 |
709
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - π ≤ 0 ) |
| 711 |
|
pipos |
⊢ 0 < π |
| 712 |
707 38 711
|
ltleii |
⊢ 0 ≤ π |
| 713 |
712
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ π ) |
| 714 |
76 77 706 710 713
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ( - π [,] π ) ) |
| 715 |
|
ioossicc |
⊢ ( - π (,) 0 ) ⊆ ( - π [,] 0 ) |
| 716 |
715
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( - π (,) 0 ) ⊆ ( - π [,] 0 ) ) |
| 717 |
|
ioombl |
⊢ ( - π (,) 0 ) ∈ dom vol |
| 718 |
717
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( - π (,) 0 ) ∈ dom vol ) |
| 719 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] 0 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 720 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] 0 ) ) → 𝑋 ∈ ℝ ) |
| 721 |
39
|
a1i |
⊢ ( 𝑠 ∈ ( - π [,] 0 ) → - π ∈ ℝ ) |
| 722 |
|
0red |
⊢ ( 𝑠 ∈ ( - π [,] 0 ) → 0 ∈ ℝ ) |
| 723 |
|
id |
⊢ ( 𝑠 ∈ ( - π [,] 0 ) → 𝑠 ∈ ( - π [,] 0 ) ) |
| 724 |
|
eliccre |
⊢ ( ( - π ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝑠 ∈ ( - π [,] 0 ) ) → 𝑠 ∈ ℝ ) |
| 725 |
721 722 723 724
|
syl3anc |
⊢ ( 𝑠 ∈ ( - π [,] 0 ) → 𝑠 ∈ ℝ ) |
| 726 |
725
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] 0 ) ) → 𝑠 ∈ ℝ ) |
| 727 |
720 726
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 728 |
719 727
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 729 |
728
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 730 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 731 |
725
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → 𝑠 ∈ ℝ ) |
| 732 |
730 731
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
| 733 |
732
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℂ ) |
| 734 |
729 733
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
| 735 |
731 734 197
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 736 |
735
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
| 737 |
736
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π [,] 0 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( - π [,] 0 ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
| 738 |
306
|
oveq2d |
⊢ ( 𝜑 → ( 𝑠 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) = ( 𝑠 + 𝑇 ) ) |
| 739 |
738
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝑠 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) = ( 𝑠 + 𝑇 ) ) |
| 740 |
739
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑠 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) ) = ( 𝐺 ‘ ( 𝑠 + 𝑇 ) ) ) |
| 741 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → 𝐺 = ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) |
| 742 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑠 + 𝑇 ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) |
| 743 |
742
|
fveq2d |
⊢ ( 𝑥 = ( 𝑠 + 𝑇 ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) ) |
| 744 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑠 + 𝑇 ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) |
| 745 |
743 744
|
oveq12d |
⊢ ( 𝑥 = ( 𝑠 + 𝑇 ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) ) |
| 746 |
745
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) ∧ 𝑥 = ( 𝑠 + 𝑇 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) ) |
| 747 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑠 ∈ ℝ ) |
| 748 |
317
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 749 |
747 748
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝑠 + 𝑇 ) ∈ ℝ ) |
| 750 |
749
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝑠 + 𝑇 ) ∈ ℝ ) |
| 751 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
| 752 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑋 ∈ ℝ ) |
| 753 |
752 749
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝑋 + ( 𝑠 + 𝑇 ) ) ∈ ℝ ) |
| 754 |
751 753
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) ∈ ℂ ) |
| 755 |
754
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) ∈ ℂ ) |
| 756 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 757 |
756 750
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ∈ ℝ ) |
| 758 |
757
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ∈ ℂ ) |
| 759 |
755 758
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) ∈ ℂ ) |
| 760 |
741 746 750 759
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑠 + 𝑇 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) ) |
| 761 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑋 ∈ ℂ ) |
| 762 |
747
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑠 ∈ ℂ ) |
| 763 |
319
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
| 764 |
761 762 763
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( ( 𝑋 + 𝑠 ) + 𝑇 ) = ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) |
| 765 |
764
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝑋 + ( 𝑠 + 𝑇 ) ) = ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) |
| 766 |
765
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) = ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) ) |
| 767 |
752 747
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 768 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝜑 ) |
| 769 |
768 767
|
jca |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝜑 ∧ ( 𝑋 + 𝑠 ) ∈ ℝ ) ) |
| 770 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( 𝑥 ∈ ℝ ↔ ( 𝑋 + 𝑠 ) ∈ ℝ ) ) |
| 771 |
770
|
anbi2d |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ↔ ( 𝜑 ∧ ( 𝑋 + 𝑠 ) ∈ ℝ ) ) ) |
| 772 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( 𝑥 + 𝑇 ) = ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) |
| 773 |
772
|
fveq2d |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) ) |
| 774 |
773 435
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) |
| 775 |
771 774
|
imbi12d |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑋 + 𝑠 ) ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) ) |
| 776 |
775 10
|
vtoclg |
⊢ ( ( 𝑋 + 𝑠 ) ∈ ℝ → ( ( 𝜑 ∧ ( 𝑋 + 𝑠 ) ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) |
| 777 |
767 769 776
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 778 |
766 777
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 779 |
778
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 780 |
4 15
|
dirkerper |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
| 781 |
780
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
| 782 |
779 781
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 783 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → 𝑠 ∈ ℝ ) |
| 784 |
782 759
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
| 785 |
783 784 197
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 786 |
785
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
| 787 |
782 786
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) = ( 𝐺 ‘ 𝑠 ) ) |
| 788 |
740 760 787
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑠 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) ) = ( 𝐺 ‘ 𝑠 ) ) |
| 789 |
|
0ltpnf |
⊢ 0 < +∞ |
| 790 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 791 |
|
elioo2 |
⊢ ( ( - π ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 0 ∈ ( - π (,) +∞ ) ↔ ( 0 ∈ ℝ ∧ - π < 0 ∧ 0 < +∞ ) ) ) |
| 792 |
52 790 791
|
mp2an |
⊢ ( 0 ∈ ( - π (,) +∞ ) ↔ ( 0 ∈ ℝ ∧ - π < 0 ∧ 0 < +∞ ) ) |
| 793 |
707 708 789 792
|
mpbir3an |
⊢ 0 ∈ ( - π (,) +∞ ) |
| 794 |
793
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ( - π (,) +∞ ) ) |
| 795 |
16 225 114 300 211 788 478 631 667 76 794
|
fourierdlem105 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π [,] 0 ) ↦ ( 𝐺 ‘ 𝑠 ) ) ∈ 𝐿1 ) |
| 796 |
737 795
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π [,] 0 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
| 797 |
716 718 734 796
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π (,) 0 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
| 798 |
|
elioore |
⊢ ( 𝑠 ∈ ( 0 (,) π ) → 𝑠 ∈ ℝ ) |
| 799 |
798
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 (,) π ) ) → 𝑠 ∈ ℝ ) |
| 800 |
799 784
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
| 801 |
799 800 197
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
| 802 |
801
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
| 803 |
802
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( 0 (,) π ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( 0 (,) π ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
| 804 |
|
ioossicc |
⊢ ( 0 (,) π ) ⊆ ( 0 [,] π ) |
| 805 |
804
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 (,) π ) ⊆ ( 0 [,] π ) ) |
| 806 |
|
ioombl |
⊢ ( 0 (,) π ) ∈ dom vol |
| 807 |
806
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 (,) π ) ∈ dom vol ) |
| 808 |
211
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 [,] π ) ) → 𝐺 : ℝ ⟶ ℂ ) |
| 809 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] π ) ) → 0 ∈ ℝ ) |
| 810 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] π ) ) → π ∈ ℝ ) |
| 811 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] π ) ) → 𝑠 ∈ ( 0 [,] π ) ) |
| 812 |
|
eliccre |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ ( 0 [,] π ) ) → 𝑠 ∈ ℝ ) |
| 813 |
809 810 811 812
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] π ) ) → 𝑠 ∈ ℝ ) |
| 814 |
813
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 [,] π ) ) → 𝑠 ∈ ℝ ) |
| 815 |
808 814
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 [,] π ) ) → ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) |
| 816 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 817 |
816
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ℝ* ) |
| 818 |
790
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → +∞ ∈ ℝ* ) |
| 819 |
711
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 < π ) |
| 820 |
|
ltpnf |
⊢ ( π ∈ ℝ → π < +∞ ) |
| 821 |
38 820
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π < +∞ ) |
| 822 |
817 818 77 819 821
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ( 0 (,) +∞ ) ) |
| 823 |
16 225 114 300 211 788 478 631 667 706 822
|
fourierdlem105 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( 0 [,] π ) ↦ ( 𝐺 ‘ 𝑠 ) ) ∈ 𝐿1 ) |
| 824 |
805 807 815 823
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( 0 (,) π ) ↦ ( 𝐺 ‘ 𝑠 ) ) ∈ 𝐿1 ) |
| 825 |
803 824
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( 0 (,) π ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
| 826 |
705 77 714 699 797 825
|
itgsplitioo |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) |
| 827 |
704 826
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) |