Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem111.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( cos ‘ ( 𝑛 · 𝑡 ) ) ) d 𝑡 / π ) ) |
2 |
|
fourierdlem111.b |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( sin ‘ ( 𝑛 · 𝑡 ) ) ) d 𝑡 / π ) ) |
3 |
|
fourierdlem111.s |
⊢ 𝑆 = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) |
4 |
|
fourierdlem111.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
5 |
|
fourierdlem111.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑚 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
6 |
|
fourierdlem111.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
7 |
|
fourierdlem111.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
8 |
|
fourierdlem111.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
9 |
|
fourierdlem111.6 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
10 |
|
fourierdlem111.fper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
11 |
|
fourierdlem111.g |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
12 |
|
fourierdlem111.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
13 |
|
fourierdlem111.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
14 |
|
fourierdlem111.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
15 |
|
fourierdlem111.t |
⊢ 𝑇 = ( 2 · π ) |
16 |
|
fourierdlem111.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( π − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
17 |
|
fourierdlem111.14 |
⊢ 𝑊 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
18 |
|
eleq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑛 ∈ ℕ ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑆 ‘ 𝑘 ) = ( 𝑆 ‘ 𝑛 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐷 ‘ 𝑘 ) = ( 𝐷 ‘ 𝑛 ) ) |
22 |
21
|
fveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑘 = 𝑛 ∧ 𝑡 ∈ ( - π (,) π ) ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
25 |
24
|
itgeq2dv |
⊢ ( 𝑘 = 𝑛 → ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) |
26 |
20 25
|
eqeq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑆 ‘ 𝑘 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ↔ ( 𝑆 ‘ 𝑛 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) ) |
27 |
19 26
|
imbi12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) ↔ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) ) ) |
28 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : ℝ ⟶ ℝ ) |
29 |
|
eqid |
⊢ ( - π (,) π ) = ( - π (,) π ) |
30 |
|
ioossre |
⊢ ( - π (,) π ) ⊆ ℝ |
31 |
30
|
a1i |
⊢ ( 𝜑 → ( - π (,) π ) ⊆ ℝ ) |
32 |
9 31
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π (,) π ) ) = ( 𝑥 ∈ ( - π (,) π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
33 |
|
ioossicc |
⊢ ( - π (,) π ) ⊆ ( - π [,] π ) |
34 |
33
|
a1i |
⊢ ( 𝜑 → ( - π (,) π ) ⊆ ( - π [,] π ) ) |
35 |
|
ioombl |
⊢ ( - π (,) π ) ∈ dom vol |
36 |
35
|
a1i |
⊢ ( 𝜑 → ( - π (,) π ) ∈ dom vol ) |
37 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝐹 : ℝ ⟶ ℝ ) |
38 |
|
pire |
⊢ π ∈ ℝ |
39 |
38
|
renegcli |
⊢ - π ∈ ℝ |
40 |
39 38
|
elicc2i |
⊢ ( 𝑡 ∈ ( - π [,] π ) ↔ ( 𝑡 ∈ ℝ ∧ - π ≤ 𝑡 ∧ 𝑡 ≤ π ) ) |
41 |
40
|
simp1bi |
⊢ ( 𝑡 ∈ ( - π [,] π ) → 𝑡 ∈ ℝ ) |
42 |
41
|
ssriv |
⊢ ( - π [,] π ) ⊆ ℝ |
43 |
42
|
a1i |
⊢ ( 𝜑 → ( - π [,] π ) ⊆ ℝ ) |
44 |
43
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝑥 ∈ ℝ ) |
45 |
37 44
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
46 |
9 43
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π [,] π ) ) = ( 𝑥 ∈ ( - π [,] π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
47 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
48 |
47
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
49 |
9 48
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
50 |
49 43
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π [,] π ) ) : ( - π [,] π ) ⟶ ℂ ) |
51 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
52 |
39
|
rexri |
⊢ - π ∈ ℝ* |
53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ* ) |
54 |
38
|
rexri |
⊢ π ∈ ℝ* |
55 |
54
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ* ) |
56 |
5 6 7
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
58 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
59 |
53 55 57 58
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
60 |
51 59
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
61 |
60
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
62 |
61 12
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
63 |
61
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
64 |
13 63
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
65 |
61
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
66 |
14 65
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
67 |
5 6 7 50 62 64 66
|
fourierdlem69 |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π [,] π ) ) ∈ 𝐿1 ) |
68 |
46 67
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
69 |
34 36 45 68
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π (,) π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
70 |
32 69
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π (,) π ) ) ∈ 𝐿1 ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ↾ ( - π (,) π ) ) ∈ 𝐿1 ) |
72 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑋 ∈ ℝ ) |
73 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
74 |
28 29 71 1 2 72 3 4 73
|
fourierdlem83 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) |
75 |
27 74
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) |
76 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - π ∈ ℝ ) |
77 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ℝ ) |
78 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → 𝐹 : ℝ ⟶ ℂ ) |
79 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → 𝑡 ∈ ℝ ) |
80 |
78 79
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
81 |
80
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
82 |
4
|
dirkerf |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
83 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
84 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → 𝑋 ∈ ℝ ) |
85 |
79 84
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
86 |
85
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
87 |
83 86
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℝ ) |
88 |
87
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℂ ) |
89 |
81 88
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ℂ ) |
90 |
76 77 89
|
itgioo |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( - π [,] π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) |
91 |
|
fvres |
⊢ ( 𝑡 ∈ ( - π [,] π ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) = ( 𝐹 ‘ 𝑡 ) ) |
92 |
91
|
eqcomd |
⊢ ( 𝑡 ∈ ( - π [,] π ) → ( 𝐹 ‘ 𝑡 ) = ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) ) |
93 |
92
|
oveq1d |
⊢ ( 𝑡 ∈ ( - π [,] π ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
94 |
93
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
95 |
94
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π [,] π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( - π [,] π ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 ) |
96 |
|
simpl |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → 𝑛 = 𝑚 ) |
97 |
96
|
oveq2d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( 2 · 𝑛 ) = ( 2 · 𝑚 ) ) |
98 |
97
|
oveq1d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑚 ) + 1 ) ) |
99 |
98
|
oveq1d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) = ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) ) |
100 |
96
|
oveq1d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 + ( 1 / 2 ) ) = ( 𝑚 + ( 1 / 2 ) ) ) |
101 |
100
|
oveq1d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) = ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) |
102 |
101
|
fveq2d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) = ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) ) |
103 |
102
|
oveq1d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) = ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) |
104 |
99 103
|
ifeq12d |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ ) → if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) = if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) |
105 |
104
|
mpteq2dva |
⊢ ( 𝑛 = 𝑚 → ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
106 |
105
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
107 |
4 106
|
eqtri |
⊢ 𝐷 = ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
108 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑠 ) = ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) ) |
109 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 − 𝑋 ) = ( 𝑡 − 𝑋 ) ) |
110 |
109
|
fveq2d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
111 |
108 110
|
oveq12d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑠 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 − 𝑋 ) ) ) = ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
112 |
111
|
cbvmptv |
⊢ ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑠 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 − 𝑋 ) ) ) ) = ( 𝑡 ∈ ( - π [,] π ) ↦ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
113 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
114 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
115 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
116 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ ℝ ) |
117 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ↾ ( - π [,] π ) ) : ( - π [,] π ) ⟶ ℂ ) |
118 |
62
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
119 |
64
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
120 |
66
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
121 |
107 5 112 113 114 115 116 117 118 119 120
|
fourierdlem101 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π [,] π ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 ) |
122 |
|
oveq2 |
⊢ ( 𝑠 = 𝑦 → ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝑦 ) ) |
123 |
122
|
fveq2d |
⊢ ( 𝑠 = 𝑦 → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
124 |
|
fveq2 |
⊢ ( 𝑠 = 𝑦 → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) |
125 |
123 124
|
oveq12d |
⊢ ( 𝑠 = 𝑦 → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
126 |
125
|
cbvitgv |
⊢ ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 |
127 |
126
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 ) |
128 |
39
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
129 |
128 8
|
resubcld |
⊢ ( 𝜑 → ( - π − 𝑋 ) ∈ ℝ ) |
130 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( - π − 𝑋 ) ∈ ℝ ) |
131 |
38
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
132 |
131 8
|
resubcld |
⊢ ( 𝜑 → ( π − 𝑋 ) ∈ ℝ ) |
133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( π − 𝑋 ) ∈ ℝ ) |
134 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
135 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑋 ∈ ℝ ) |
136 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) |
137 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( - π − 𝑋 ) ∈ ℝ ) |
138 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( π − 𝑋 ) ∈ ℝ ) |
139 |
|
elicc2 |
⊢ ( ( ( - π − 𝑋 ) ∈ ℝ ∧ ( π − 𝑋 ) ∈ ℝ ) → ( 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( - π − 𝑋 ) ≤ 𝑦 ∧ 𝑦 ≤ ( π − 𝑋 ) ) ) ) |
140 |
137 138 139
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( - π − 𝑋 ) ≤ 𝑦 ∧ 𝑦 ≤ ( π − 𝑋 ) ) ) ) |
141 |
136 140
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑦 ∈ ℝ ∧ ( - π − 𝑋 ) ≤ 𝑦 ∧ 𝑦 ≤ ( π − 𝑋 ) ) ) |
142 |
141
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑦 ∈ ℝ ) |
143 |
135 142
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑦 ) ∈ ℝ ) |
144 |
134 143
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ∈ ℂ ) |
145 |
144
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ∈ ℂ ) |
146 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
147 |
142
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑦 ∈ ℝ ) |
148 |
146 147
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℝ ) |
149 |
148
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℂ ) |
150 |
145 149
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ ℂ ) |
151 |
130 133 150
|
itgioo |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 ) |
152 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → - π ∈ ℝ ) |
153 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → π ∈ ℝ ) |
154 |
8
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
155 |
131
|
recnd |
⊢ ( 𝜑 → π ∈ ℂ ) |
156 |
155
|
negcld |
⊢ ( 𝜑 → - π ∈ ℂ ) |
157 |
154 156
|
pncan3d |
⊢ ( 𝜑 → ( 𝑋 + ( - π − 𝑋 ) ) = - π ) |
158 |
157
|
eqcomd |
⊢ ( 𝜑 → - π = ( 𝑋 + ( - π − 𝑋 ) ) ) |
159 |
158
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → - π = ( 𝑋 + ( - π − 𝑋 ) ) ) |
160 |
141
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( - π − 𝑋 ) ≤ 𝑦 ) |
161 |
137 142 135 160
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + ( - π − 𝑋 ) ) ≤ ( 𝑋 + 𝑦 ) ) |
162 |
159 161
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → - π ≤ ( 𝑋 + 𝑦 ) ) |
163 |
141
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑦 ≤ ( π − 𝑋 ) ) |
164 |
142 138 135 163
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑦 ) ≤ ( 𝑋 + ( π − 𝑋 ) ) ) |
165 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑋 ∈ ℂ ) |
166 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → π ∈ ℂ ) |
167 |
165 166
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + ( π − 𝑋 ) ) = π ) |
168 |
164 167
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑦 ) ≤ π ) |
169 |
152 153 143 162 168
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑦 ) ∈ ( - π [,] π ) ) |
170 |
|
fvres |
⊢ ( ( 𝑋 + 𝑦 ) ∈ ( - π [,] π ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
171 |
169 170
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
172 |
171
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) = ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) ) |
173 |
172
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) = ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) ) |
174 |
173
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
175 |
174
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 ) |
176 |
127 151 175
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) d 𝑦 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
177 |
121 176
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π [,] π ) ( ( ( 𝐹 ↾ ( - π [,] π ) ) ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
178 |
90 95 177
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
179 |
|
elioore |
⊢ ( 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) → 𝑠 ∈ ℝ ) |
180 |
179
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
181 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
182 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → 𝑋 ∈ ℝ ) |
183 |
179
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
184 |
182 183
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
185 |
181 184
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
186 |
185
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
187 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
188 |
187 180
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
189 |
188
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℂ ) |
190 |
186 189
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
191 |
|
oveq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝑋 + 𝑥 ) = ( 𝑋 + 𝑠 ) ) |
192 |
191
|
fveq2d |
⊢ ( 𝑥 = 𝑠 → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
193 |
|
fveq2 |
⊢ ( 𝑥 = 𝑠 → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
194 |
192 193
|
oveq12d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
195 |
194
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) = ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
196 |
11 195
|
eqtri |
⊢ 𝐺 = ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
197 |
196
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ℝ ∧ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
198 |
180 190 197
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
199 |
198
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
200 |
199
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑠 ) d 𝑠 ) |
201 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
202 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑋 ∈ ℝ ) |
203 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
204 |
202 203
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑋 + 𝑥 ) ∈ ℝ ) |
205 |
201 204
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ∈ ℂ ) |
206 |
205
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ∈ ℂ ) |
207 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
208 |
207
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
209 |
208
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
210 |
206 209
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ ℂ ) |
211 |
210 11
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 : ℝ ⟶ ℂ ) |
212 |
211
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝐺 : ℝ ⟶ ℂ ) |
213 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( - π − 𝑋 ) ∈ ℝ ) |
214 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( π − 𝑋 ) ∈ ℝ ) |
215 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) |
216 |
|
eliccre |
⊢ ( ( ( - π − 𝑋 ) ∈ ℝ ∧ ( π − 𝑋 ) ∈ ℝ ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
217 |
213 214 215 216
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
218 |
217
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
219 |
212 218
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) |
220 |
130 133 219
|
itgioo |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑠 ) d 𝑠 ) |
221 |
|
fveq2 |
⊢ ( 𝑠 = 𝑥 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑥 ) ) |
222 |
221
|
cbvitgv |
⊢ ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 |
223 |
220 222
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
224 |
200 223
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
225 |
|
eqid |
⊢ ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) = ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) |
226 |
116
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - 𝑋 ∈ ℝ ) |
227 |
5
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
228 |
6 227
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
229 |
7 228
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
230 |
229
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
231 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
232 |
230 231
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
233 |
232
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
234 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑋 ∈ ℝ ) |
235 |
233 234
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
236 |
235 17
|
fmptd |
⊢ ( 𝜑 → 𝑊 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
237 |
|
reex |
⊢ ℝ ∈ V |
238 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
239 |
237 238
|
pm3.2i |
⊢ ( ℝ ∈ V ∧ ( 0 ... 𝑀 ) ∈ V ) |
240 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ ( 0 ... 𝑀 ) ∈ V ) → ( 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑊 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) |
241 |
239 240
|
mp1i |
⊢ ( 𝜑 → ( 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑊 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) |
242 |
236 241
|
mpbird |
⊢ ( 𝜑 → 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
243 |
17
|
a1i |
⊢ ( 𝜑 → 𝑊 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) ) |
244 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 0 ) ) |
245 |
229
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
246 |
245
|
simpld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ) |
247 |
246
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = - π ) |
248 |
244 247
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( 𝑄 ‘ 𝑖 ) = - π ) |
249 |
248
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( - π − 𝑋 ) ) |
250 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
251 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
252 |
|
0red |
⊢ ( 𝑀 ∈ ℕ → 0 ∈ ℝ ) |
253 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
254 |
|
nngt0 |
⊢ ( 𝑀 ∈ ℕ → 0 < 𝑀 ) |
255 |
252 253 254
|
ltled |
⊢ ( 𝑀 ∈ ℕ → 0 ≤ 𝑀 ) |
256 |
6 255
|
syl |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
257 |
|
eluz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ) ) |
258 |
250 251 256 257
|
syl3anbrc |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
259 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
260 |
258 259
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
261 |
243 249 260 129
|
fvmptd |
⊢ ( 𝜑 → ( 𝑊 ‘ 0 ) = ( - π − 𝑋 ) ) |
262 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
263 |
246
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = π ) |
264 |
262 263
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) = π ) |
265 |
264
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝑀 ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( π − 𝑋 ) ) |
266 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
267 |
258 266
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
268 |
243 265 267 132
|
fvmptd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝑀 ) = ( π − 𝑋 ) ) |
269 |
261 268
|
jca |
⊢ ( 𝜑 → ( ( 𝑊 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑊 ‘ 𝑀 ) = ( π − 𝑋 ) ) ) |
270 |
232
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
271 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
272 |
271
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
273 |
270 272
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
274 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
275 |
274
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
276 |
270 275
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
277 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℝ ) |
278 |
245
|
simprd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
279 |
278
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
280 |
273 276 277 279
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
281 |
272 235
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
282 |
17
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) → ( 𝑊 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
283 |
272 281 282
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
284 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
285 |
284
|
oveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) |
286 |
285
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) |
287 |
17 286
|
eqtri |
⊢ 𝑊 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) |
288 |
287
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑊 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) ) |
289 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
290 |
289
|
oveq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
291 |
290
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 = ( 𝑖 + 1 ) ) → ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
292 |
276 277
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
293 |
288 291 275 292
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
294 |
280 283 293
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
295 |
294
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
296 |
242 269 295
|
jca32 |
⊢ ( 𝜑 → ( 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑊 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑊 ‘ 𝑀 ) = ( π − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
297 |
16
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑊 ∈ ( 𝑂 ‘ 𝑀 ) ↔ ( 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑊 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑊 ‘ 𝑀 ) = ( π − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
298 |
6 297
|
syl |
⊢ ( 𝜑 → ( 𝑊 ∈ ( 𝑂 ‘ 𝑀 ) ↔ ( 𝑊 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑊 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑊 ‘ 𝑀 ) = ( π − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
299 |
296 298
|
mpbird |
⊢ ( 𝜑 → 𝑊 ∈ ( 𝑂 ‘ 𝑀 ) ) |
300 |
299
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑊 ∈ ( 𝑂 ‘ 𝑀 ) ) |
301 |
155 156 154
|
nnncan2d |
⊢ ( 𝜑 → ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) = ( π − - π ) ) |
302 |
|
picn |
⊢ π ∈ ℂ |
303 |
302
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
304 |
302 302
|
subnegi |
⊢ ( π − - π ) = ( π + π ) |
305 |
303 15 304
|
3eqtr4i |
⊢ 𝑇 = ( π − - π ) |
306 |
301 305
|
eqtr4di |
⊢ ( 𝜑 → ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) = 𝑇 ) |
307 |
306
|
oveq2d |
⊢ ( 𝜑 → ( 𝑥 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) = ( 𝑥 + 𝑇 ) ) |
308 |
307
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑥 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
309 |
308
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑥 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
310 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
311 |
11
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ ℂ ) → ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
312 |
310 210 311
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
313 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑋 ∈ ℂ ) |
314 |
203
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
315 |
|
2re |
⊢ 2 ∈ ℝ |
316 |
315 38
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
317 |
15 316
|
eqeltri |
⊢ 𝑇 ∈ ℝ |
318 |
317
|
a1i |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
319 |
318
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
320 |
319
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
321 |
313 314 320
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑋 + 𝑥 ) + 𝑇 ) = ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) |
322 |
321
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑋 + ( 𝑥 + 𝑇 ) ) = ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) |
323 |
322
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) = ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) ) |
324 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝜑 ) |
325 |
324 204
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝜑 ∧ ( 𝑋 + 𝑥 ) ∈ ℝ ) ) |
326 |
|
eleq1 |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( 𝑠 ∈ ℝ ↔ ( 𝑋 + 𝑥 ) ∈ ℝ ) ) |
327 |
326
|
anbi2d |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ↔ ( 𝜑 ∧ ( 𝑋 + 𝑥 ) ∈ ℝ ) ) ) |
328 |
|
oveq1 |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( 𝑠 + 𝑇 ) = ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) |
329 |
328
|
fveq2d |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) ) |
330 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) |
331 |
329 330
|
eqeq12d |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ 𝑠 ) ↔ ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) |
332 |
327 331
|
imbi12d |
⊢ ( 𝑠 = ( 𝑋 + 𝑥 ) → ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ 𝑠 ) ) ↔ ( ( 𝜑 ∧ ( 𝑋 + 𝑥 ) ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) ) |
333 |
|
eleq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 ∈ ℝ ↔ 𝑠 ∈ ℝ ) ) |
334 |
333
|
anbi2d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ↔ ( 𝜑 ∧ 𝑠 ∈ ℝ ) ) ) |
335 |
|
oveq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 + 𝑇 ) = ( 𝑠 + 𝑇 ) ) |
336 |
335
|
fveq2d |
⊢ ( 𝑥 = 𝑠 → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) ) |
337 |
|
fveq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑠 ) ) |
338 |
336 337
|
eqeq12d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ 𝑠 ) ) ) |
339 |
334 338
|
imbi12d |
⊢ ( 𝑥 = 𝑠 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ 𝑠 ) ) ) ) |
340 |
339 10
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑠 + 𝑇 ) ) = ( 𝐹 ‘ 𝑠 ) ) |
341 |
332 340
|
vtoclg |
⊢ ( ( 𝑋 + 𝑥 ) ∈ ℝ → ( ( 𝜑 ∧ ( 𝑋 + 𝑥 ) ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) |
342 |
204 325 341
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑥 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) |
343 |
323 342
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) ) |
344 |
343
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) ) |
345 |
4 15
|
dirkerper |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) |
346 |
345
|
eqcomd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) |
347 |
346
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) |
348 |
344 347
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) ) |
349 |
196
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐺 = ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
350 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( 𝑋 + 𝑠 ) = ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) |
351 |
350
|
fveq2d |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) ) |
352 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) |
353 |
351 352
|
oveq12d |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) ) |
354 |
353
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑠 = ( 𝑥 + 𝑇 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) ) |
355 |
317
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
356 |
310 355
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
357 |
317
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
358 |
203 357
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
359 |
202 358
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑋 + ( 𝑥 + 𝑇 ) ) ∈ ℝ ) |
360 |
201 359
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) ∈ ℂ ) |
361 |
360
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) ∈ ℂ ) |
362 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
363 |
362 356
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ∈ ℝ ) |
364 |
363
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ∈ ℂ ) |
365 |
361 364
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) ∈ ℂ ) |
366 |
349 354 356 365
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) ) |
367 |
366
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑥 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥 + 𝑇 ) ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
368 |
312 348 367
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
369 |
309 368
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑥 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) ) = ( 𝐺 ‘ 𝑥 ) ) |
370 |
196
|
reseq1i |
⊢ ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
371 |
370
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
372 |
|
ioossre |
⊢ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
373 |
|
resmpt |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ → ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
374 |
372 373
|
ax-mp |
⊢ ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
375 |
371 374
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
376 |
273
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
377 |
376
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
378 |
276
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
379 |
378
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
380 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
381 |
|
elioore |
⊢ ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ℝ ) |
382 |
381
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
383 |
380 382
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
384 |
383
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
385 |
|
eleq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
386 |
385
|
anbi2d |
⊢ ( 𝑥 = 𝑠 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
387 |
191
|
breq2d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑥 ) ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑠 ) ) ) |
388 |
386 387
|
imbi12d |
⊢ ( 𝑥 = 𝑠 → ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑥 ) ) ↔ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑠 ) ) ) ) |
389 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℂ ) |
390 |
283 281
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ ) |
391 |
390
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℂ ) |
392 |
389 391
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝑊 ‘ 𝑖 ) + 𝑋 ) ) |
393 |
283
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) + 𝑋 ) = ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) + 𝑋 ) ) |
394 |
273
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
395 |
394 389
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) + 𝑋 ) = ( 𝑄 ‘ 𝑖 ) ) |
396 |
392 393 395
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
397 |
396
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
398 |
390
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ ) |
399 |
|
elioore |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → 𝑥 ∈ ℝ ) |
400 |
399
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
401 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
402 |
390
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ) |
403 |
402
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ) |
404 |
293 292
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
405 |
404
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
406 |
405
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
407 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
408 |
|
ioogtlb |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) < 𝑥 ) |
409 |
403 406 407 408
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) < 𝑥 ) |
410 |
398 400 401 409
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) < ( 𝑋 + 𝑥 ) ) |
411 |
397 410
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑥 ) ) |
412 |
388 411
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑠 ) ) |
413 |
191
|
breq1d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑋 + 𝑥 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑋 + 𝑠 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
414 |
386 413
|
imbi12d |
⊢ ( 𝑥 = 𝑠 → ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
415 |
404
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
416 |
|
iooltub |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
417 |
403 406 407 416
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
418 |
400 415 401 417
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) < ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
419 |
404
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
420 |
389 419
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑊 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) ) |
421 |
293
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) = ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) + 𝑋 ) ) |
422 |
276
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
423 |
422 389
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) + 𝑋 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
424 |
420 421 423
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
425 |
424
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
426 |
418 425
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
427 |
414 426
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
428 |
377 379 384 412 427
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
429 |
191
|
cbvmptv |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) |
430 |
429
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ) |
431 |
|
ioossre |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
432 |
431
|
a1i |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
433 |
9 432
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
434 |
433
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
435 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
436 |
428 430 434 435
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) |
437 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) |
438 |
|
ssid |
⊢ ℂ ⊆ ℂ |
439 |
438
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
440 |
439 154 439
|
constcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝑋 ) ∈ ( ℂ –cn→ ℂ ) ) |
441 |
|
cncfmptid |
⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
442 |
438 438 441
|
mp2an |
⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) |
443 |
442
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
444 |
440 443
|
addcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
445 |
444
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
446 |
|
ioosscn |
⊢ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
447 |
446
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
448 |
|
ioosscn |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
449 |
448
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
450 |
376
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
451 |
378
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
452 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
453 |
399
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
454 |
452 453
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ℝ ) |
455 |
454
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ℝ ) |
456 |
450 451 455 411 426
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
457 |
437 445 447 449 456
|
cncfmptssg |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
458 |
457 12
|
cncfco |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
459 |
436 458
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
460 |
459
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
461 |
|
eqid |
⊢ ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
462 |
82
|
feqmptd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) = ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
463 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) ) |
464 |
47 438 463
|
mp2an |
⊢ ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) |
465 |
4
|
dirkercncf |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℝ ) ) |
466 |
464 465
|
sselid |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℂ ) ) |
467 |
462 466
|
eqeltrrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℂ ) ) |
468 |
372
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
469 |
438
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ℂ ⊆ ℂ ) |
470 |
|
cncff |
⊢ ( ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℂ ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) |
471 |
466 470
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) |
472 |
471
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) |
473 |
381
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
474 |
472 473
|
ffvelrnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℂ ) |
475 |
461 467 468 469 474
|
cncfmptssg |
⊢ ( 𝑛 ∈ ℕ → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
476 |
475
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
477 |
460 476
|
mulcncf |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
478 |
375 477
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
479 |
453 205
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ∈ ℂ ) |
480 |
479
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ∈ ℂ ) |
481 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) |
482 |
480 481
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
483 |
482
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
484 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
485 |
372
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
486 |
484 485
|
fssresd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
487 |
47
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ℝ ⊆ ℂ ) |
488 |
486 487
|
fssd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
489 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) |
490 |
|
fdm |
⊢ ( 𝐹 : ℝ ⟶ ℂ → dom 𝐹 = ℝ ) |
491 |
49 490
|
syl |
⊢ ( 𝜑 → dom 𝐹 = ℝ ) |
492 |
431 491
|
sseqtrrid |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
493 |
|
ssdmres |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
494 |
492 493
|
sylib |
⊢ ( 𝜑 → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
495 |
494
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
496 |
495
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
497 |
456 496
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
498 |
273
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
499 |
498 411
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ≠ ( 𝑄 ‘ 𝑖 ) ) |
500 |
|
eldifsn |
⊢ ( ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ↔ ( ( 𝑋 + 𝑥 ) ∈ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑋 + 𝑥 ) ≠ ( 𝑄 ‘ 𝑖 ) ) ) |
501 |
497 499 500
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
502 |
501
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
503 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) |
504 |
503
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) → ran ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
505 |
502 504
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ran ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
506 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) |
507 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑊 ‘ 𝑖 ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
508 |
507
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑊 ‘ 𝑖 ) ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
509 |
390
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ≤ ( 𝑊 ‘ 𝑖 ) ) |
510 |
390 404 294
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ≤ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
511 |
390 404 390 509 510
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
512 |
396 273
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ∈ ℝ ) |
513 |
506 508 511 512
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
514 |
396
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) = ( 𝑄 ‘ 𝑖 ) ) |
515 |
513 514
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) |
516 |
390 404
|
iccssred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
517 |
516 47
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
518 |
517
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) |
519 |
|
rescncf |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) ) |
520 |
517 445 519
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
521 |
518 520
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
522 |
521 511
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
523 |
515 522
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
524 |
|
ioossicc |
⊢ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
525 |
|
resmpt |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) |
526 |
524 525
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) |
527 |
526
|
eqcomi |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
528 |
527
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
529 |
528
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
530 |
154
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℂ ) |
531 |
390
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ ) |
532 |
404
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
533 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
534 |
|
eliccre |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
535 |
531 532 533 534
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
536 |
535
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ℂ ) |
537 |
530 536
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ℂ ) |
538 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) |
539 |
537 538
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) : ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
540 |
390 404 294 539
|
limciccioolb |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
541 |
529 540
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
542 |
523 541
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
543 |
505 542 13
|
limccog |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
544 |
49 432
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
545 |
544
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
546 |
456 503
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
547 |
|
fcompt |
⊢ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ∧ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) = ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
548 |
545 546 547
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) = ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
549 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) |
550 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑋 + 𝑥 ) = ( 𝑋 + 𝑦 ) ) |
551 |
550
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + 𝑦 ) ) |
552 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
553 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
554 |
372 552
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 ∈ ℝ ) |
555 |
553 554
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑦 ) ∈ ℝ ) |
556 |
549 551 552 555
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) = ( 𝑋 + 𝑦 ) ) |
557 |
556
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑦 ) ) ) |
558 |
557
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑦 ) ) ) |
559 |
376
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
560 |
378
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
561 |
555
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑦 ) ∈ ℝ ) |
562 |
396
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) ) |
563 |
390
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ ) |
564 |
554
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 ∈ ℝ ) |
565 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
566 |
402
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ) |
567 |
405
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
568 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
569 |
|
ioogtlb |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) < 𝑦 ) |
570 |
566 567 568 569
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ 𝑖 ) < 𝑦 ) |
571 |
563 564 565 570
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑊 ‘ 𝑖 ) ) < ( 𝑋 + 𝑦 ) ) |
572 |
562 571
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑦 ) ) |
573 |
404
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
574 |
|
iooltub |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
575 |
566 567 568 574
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑦 < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
576 |
564 573 565 575
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑦 ) < ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
577 |
424
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
578 |
576 577
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑦 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
579 |
559 560 561 572 578
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑦 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
580 |
|
fvres |
⊢ ( ( 𝑋 + 𝑦 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
581 |
579 580
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
582 |
558 581
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
583 |
582
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) ) |
584 |
550
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
585 |
584
|
cbvmptv |
⊢ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) = ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
586 |
583 585
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑦 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) |
587 |
548 586
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) |
588 |
587
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
589 |
543 588
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
590 |
589
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
591 |
|
fvres |
⊢ ( ( 𝑊 ‘ 𝑖 ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) |
592 |
511 591
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) |
593 |
592
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) |
594 |
593
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) |
595 |
516
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
596 |
465
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℝ ) ) |
597 |
|
rescncf |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ → ( ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ) ) |
598 |
595 596 597
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ) |
599 |
511
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
600 |
598 599
|
cnlimci |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ∈ ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
601 |
594 600
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ∈ ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
602 |
524
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
603 |
602
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
604 |
603
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
605 |
604
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
606 |
605
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
607 |
390
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ℝ ) |
608 |
404
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
609 |
294
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) < ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
610 |
471
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) |
611 |
610 595
|
fssresd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
612 |
607 608 609 611
|
limciccioolb |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
613 |
606 612
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
614 |
601 613
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ∈ ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
615 |
483 488 489 590 614
|
mullimcf |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
616 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) = ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ) |
617 |
192
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑥 = 𝑠 ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
618 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
619 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
620 |
619 383
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
621 |
620
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
622 |
616 617 618 621
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
623 |
622
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
624 |
|
fvres |
⊢ ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
625 |
624
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
626 |
623 625
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
627 |
626
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) |
628 |
627
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) ) |
629 |
375 628
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) = ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
630 |
629
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) = ( ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
631 |
615 630
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) ∈ ( ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ 𝑖 ) ) ) |
632 |
455 426
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ≠ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
633 |
|
eldifsn |
⊢ ( ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↔ ( ( 𝑋 + 𝑥 ) ∈ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝑋 + 𝑥 ) ≠ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
634 |
497 632 633
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
635 |
634
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
636 |
503
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ( 𝑋 + 𝑥 ) ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) → ran ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
637 |
635 636
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ran ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
638 |
404
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
639 |
390 404 404 510 638
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
640 |
521 639
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
641 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑊 ‘ ( 𝑖 + 1 ) ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
642 |
641
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 = ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
643 |
277 404
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ∈ ℝ ) |
644 |
506 642 639 643
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑋 + ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
645 |
644 424
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
646 |
528
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
647 |
390 404 294 539
|
limcicciooub |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
648 |
646 647
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
649 |
640 645 648
|
3eltr3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
650 |
637 649 14
|
limccog |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
651 |
587
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
652 |
650 651
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
653 |
652
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
654 |
639
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
655 |
598 654
|
cnlimci |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
656 |
|
fvres |
⊢ ( ( 𝑊 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
657 |
654 656
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
658 |
607 608 609 611
|
limcicciooub |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
659 |
658
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
660 |
|
resabs1 |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
661 |
524 660
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ) |
662 |
661
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
663 |
659 662
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
664 |
655 657 663
|
3eltr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
665 |
483 488 489 653 664
|
mullimcf |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐿 · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
666 |
629
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝑥 ∈ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) ‘ 𝑠 ) · ( ( ( 𝐷 ‘ 𝑛 ) ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
667 |
665 666
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐿 · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝐺 ↾ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) ) |
668 |
130 133 225 226 16 114 300 211 369 478 631 667
|
fourierdlem110 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( ( - π − 𝑋 ) − - 𝑋 ) [,] ( ( π − 𝑋 ) − - 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
669 |
668
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( ( ( - π − 𝑋 ) − - 𝑋 ) [,] ( ( π − 𝑋 ) − - 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
670 |
129
|
recnd |
⊢ ( 𝜑 → ( - π − 𝑋 ) ∈ ℂ ) |
671 |
670 154
|
subnegd |
⊢ ( 𝜑 → ( ( - π − 𝑋 ) − - 𝑋 ) = ( ( - π − 𝑋 ) + 𝑋 ) ) |
672 |
156 154
|
npcand |
⊢ ( 𝜑 → ( ( - π − 𝑋 ) + 𝑋 ) = - π ) |
673 |
671 672
|
eqtrd |
⊢ ( 𝜑 → ( ( - π − 𝑋 ) − - 𝑋 ) = - π ) |
674 |
132
|
recnd |
⊢ ( 𝜑 → ( π − 𝑋 ) ∈ ℂ ) |
675 |
674 154
|
subnegd |
⊢ ( 𝜑 → ( ( π − 𝑋 ) − - 𝑋 ) = ( ( π − 𝑋 ) + 𝑋 ) ) |
676 |
155 154
|
npcand |
⊢ ( 𝜑 → ( ( π − 𝑋 ) + 𝑋 ) = π ) |
677 |
675 676
|
eqtrd |
⊢ ( 𝜑 → ( ( π − 𝑋 ) − - 𝑋 ) = π ) |
678 |
673 677
|
oveq12d |
⊢ ( 𝜑 → ( ( ( - π − 𝑋 ) − - 𝑋 ) [,] ( ( π − 𝑋 ) − - 𝑋 ) ) = ( - π [,] π ) ) |
679 |
678
|
itgeq1d |
⊢ ( 𝜑 → ∫ ( ( ( - π − 𝑋 ) − - 𝑋 ) [,] ( ( π − 𝑋 ) − - 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
680 |
679
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( ( - π − 𝑋 ) − - 𝑋 ) [,] ( ( π − 𝑋 ) − - 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
681 |
669 680
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
682 |
|
fveq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑠 ) ) |
683 |
682
|
cbvitgv |
⊢ ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑠 ) d 𝑠 |
684 |
211
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝐺 : ℝ ⟶ ℂ ) |
685 |
44
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝑥 ∈ ℝ ) |
686 |
684 685
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( - π [,] π ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
687 |
76 77 686
|
itgioo |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
688 |
|
elioore |
⊢ ( 𝑠 ∈ ( - π (,) π ) → 𝑠 ∈ ℝ ) |
689 |
688
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → 𝑠 ∈ ℝ ) |
690 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π (,) π ) ) → 𝐹 : ℝ ⟶ ℂ ) |
691 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π (,) π ) ) → 𝑋 ∈ ℝ ) |
692 |
688
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π (,) π ) ) → 𝑠 ∈ ℝ ) |
693 |
691 692
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π (,) π ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
694 |
690 693
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π (,) π ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
695 |
694
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
696 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
697 |
696 689
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
698 |
697
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℂ ) |
699 |
695 698
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
700 |
689 699 197
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) π ) ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
701 |
700
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
702 |
683 687 701
|
3eqtr3a |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
703 |
224 681 702
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( ( - π − 𝑋 ) (,) ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
704 |
75 178 703
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
705 |
77
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - π ∈ ℝ ) |
706 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ℝ ) |
707 |
|
0re |
⊢ 0 ∈ ℝ |
708 |
|
negpilt0 |
⊢ - π < 0 |
709 |
39 707 708
|
ltleii |
⊢ - π ≤ 0 |
710 |
709
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - π ≤ 0 ) |
711 |
|
pipos |
⊢ 0 < π |
712 |
707 38 711
|
ltleii |
⊢ 0 ≤ π |
713 |
712
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ π ) |
714 |
76 77 706 710 713
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ( - π [,] π ) ) |
715 |
|
ioossicc |
⊢ ( - π (,) 0 ) ⊆ ( - π [,] 0 ) |
716 |
715
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( - π (,) 0 ) ⊆ ( - π [,] 0 ) ) |
717 |
|
ioombl |
⊢ ( - π (,) 0 ) ∈ dom vol |
718 |
717
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( - π (,) 0 ) ∈ dom vol ) |
719 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] 0 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
720 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] 0 ) ) → 𝑋 ∈ ℝ ) |
721 |
39
|
a1i |
⊢ ( 𝑠 ∈ ( - π [,] 0 ) → - π ∈ ℝ ) |
722 |
|
0red |
⊢ ( 𝑠 ∈ ( - π [,] 0 ) → 0 ∈ ℝ ) |
723 |
|
id |
⊢ ( 𝑠 ∈ ( - π [,] 0 ) → 𝑠 ∈ ( - π [,] 0 ) ) |
724 |
|
eliccre |
⊢ ( ( - π ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝑠 ∈ ( - π [,] 0 ) ) → 𝑠 ∈ ℝ ) |
725 |
721 722 723 724
|
syl3anc |
⊢ ( 𝑠 ∈ ( - π [,] 0 ) → 𝑠 ∈ ℝ ) |
726 |
725
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] 0 ) ) → 𝑠 ∈ ℝ ) |
727 |
720 726
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
728 |
719 727
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
729 |
728
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
730 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
731 |
725
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → 𝑠 ∈ ℝ ) |
732 |
730 731
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
733 |
732
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℂ ) |
734 |
729 733
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
735 |
731 734 197
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
736 |
735
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] 0 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
737 |
736
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π [,] 0 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( - π [,] 0 ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
738 |
306
|
oveq2d |
⊢ ( 𝜑 → ( 𝑠 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) = ( 𝑠 + 𝑇 ) ) |
739 |
738
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝑠 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) = ( 𝑠 + 𝑇 ) ) |
740 |
739
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑠 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) ) = ( 𝐺 ‘ ( 𝑠 + 𝑇 ) ) ) |
741 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → 𝐺 = ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) |
742 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑠 + 𝑇 ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) |
743 |
742
|
fveq2d |
⊢ ( 𝑥 = ( 𝑠 + 𝑇 ) → ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) ) |
744 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑠 + 𝑇 ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) |
745 |
743 744
|
oveq12d |
⊢ ( 𝑥 = ( 𝑠 + 𝑇 ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) ) |
746 |
745
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) ∧ 𝑥 = ( 𝑠 + 𝑇 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) ) |
747 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑠 ∈ ℝ ) |
748 |
317
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
749 |
747 748
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝑠 + 𝑇 ) ∈ ℝ ) |
750 |
749
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝑠 + 𝑇 ) ∈ ℝ ) |
751 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
752 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑋 ∈ ℝ ) |
753 |
752 749
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝑋 + ( 𝑠 + 𝑇 ) ) ∈ ℝ ) |
754 |
751 753
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) ∈ ℂ ) |
755 |
754
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) ∈ ℂ ) |
756 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
757 |
756 750
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ∈ ℝ ) |
758 |
757
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ∈ ℂ ) |
759 |
755 758
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) ∈ ℂ ) |
760 |
741 746 750 759
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑠 + 𝑇 ) ) = ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) ) |
761 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑋 ∈ ℂ ) |
762 |
747
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑠 ∈ ℂ ) |
763 |
319
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
764 |
761 762 763
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( ( 𝑋 + 𝑠 ) + 𝑇 ) = ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) |
765 |
764
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝑋 + ( 𝑠 + 𝑇 ) ) = ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) |
766 |
765
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) = ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) ) |
767 |
752 747
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
768 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝜑 ) |
769 |
768 767
|
jca |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝜑 ∧ ( 𝑋 + 𝑠 ) ∈ ℝ ) ) |
770 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( 𝑥 ∈ ℝ ↔ ( 𝑋 + 𝑠 ) ∈ ℝ ) ) |
771 |
770
|
anbi2d |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ↔ ( 𝜑 ∧ ( 𝑋 + 𝑠 ) ∈ ℝ ) ) ) |
772 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( 𝑥 + 𝑇 ) = ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) |
773 |
772
|
fveq2d |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) ) |
774 |
773 435
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) |
775 |
771 774
|
imbi12d |
⊢ ( 𝑥 = ( 𝑋 + 𝑠 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑋 + 𝑠 ) ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) ) |
776 |
775 10
|
vtoclg |
⊢ ( ( 𝑋 + 𝑠 ) ∈ ℝ → ( ( 𝜑 ∧ ( 𝑋 + 𝑠 ) ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) |
777 |
767 769 776
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑋 + 𝑠 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
778 |
766 777
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
779 |
778
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
780 |
4 15
|
dirkerper |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
781 |
780
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
782 |
779 781
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
783 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → 𝑠 ∈ ℝ ) |
784 |
782 759
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
785 |
783 784 197
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
786 |
785
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
787 |
782 786
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑠 + 𝑇 ) ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠 + 𝑇 ) ) ) = ( 𝐺 ‘ 𝑠 ) ) |
788 |
740 760 787
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐺 ‘ ( 𝑠 + ( ( π − 𝑋 ) − ( - π − 𝑋 ) ) ) ) = ( 𝐺 ‘ 𝑠 ) ) |
789 |
|
0ltpnf |
⊢ 0 < +∞ |
790 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
791 |
|
elioo2 |
⊢ ( ( - π ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 0 ∈ ( - π (,) +∞ ) ↔ ( 0 ∈ ℝ ∧ - π < 0 ∧ 0 < +∞ ) ) ) |
792 |
52 790 791
|
mp2an |
⊢ ( 0 ∈ ( - π (,) +∞ ) ↔ ( 0 ∈ ℝ ∧ - π < 0 ∧ 0 < +∞ ) ) |
793 |
707 708 789 792
|
mpbir3an |
⊢ 0 ∈ ( - π (,) +∞ ) |
794 |
793
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ( - π (,) +∞ ) ) |
795 |
16 225 114 300 211 788 478 631 667 76 794
|
fourierdlem105 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π [,] 0 ) ↦ ( 𝐺 ‘ 𝑠 ) ) ∈ 𝐿1 ) |
796 |
737 795
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π [,] 0 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
797 |
716 718 734 796
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π (,) 0 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
798 |
|
elioore |
⊢ ( 𝑠 ∈ ( 0 (,) π ) → 𝑠 ∈ ℝ ) |
799 |
798
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 (,) π ) ) → 𝑠 ∈ ℝ ) |
800 |
799 784
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
801 |
799 800 197
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
802 |
801
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
803 |
802
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( 0 (,) π ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( 0 (,) π ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
804 |
|
ioossicc |
⊢ ( 0 (,) π ) ⊆ ( 0 [,] π ) |
805 |
804
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 (,) π ) ⊆ ( 0 [,] π ) ) |
806 |
|
ioombl |
⊢ ( 0 (,) π ) ∈ dom vol |
807 |
806
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 (,) π ) ∈ dom vol ) |
808 |
211
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 [,] π ) ) → 𝐺 : ℝ ⟶ ℂ ) |
809 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] π ) ) → 0 ∈ ℝ ) |
810 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] π ) ) → π ∈ ℝ ) |
811 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] π ) ) → 𝑠 ∈ ( 0 [,] π ) ) |
812 |
|
eliccre |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ ( 0 [,] π ) ) → 𝑠 ∈ ℝ ) |
813 |
809 810 811 812
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] π ) ) → 𝑠 ∈ ℝ ) |
814 |
813
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 [,] π ) ) → 𝑠 ∈ ℝ ) |
815 |
808 814
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 [,] π ) ) → ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) |
816 |
|
0xr |
⊢ 0 ∈ ℝ* |
817 |
816
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ℝ* ) |
818 |
790
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → +∞ ∈ ℝ* ) |
819 |
711
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 < π ) |
820 |
|
ltpnf |
⊢ ( π ∈ ℝ → π < +∞ ) |
821 |
38 820
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π < +∞ ) |
822 |
817 818 77 819 821
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ( 0 (,) +∞ ) ) |
823 |
16 225 114 300 211 788 478 631 667 706 822
|
fourierdlem105 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( 0 [,] π ) ↦ ( 𝐺 ‘ 𝑠 ) ) ∈ 𝐿1 ) |
824 |
805 807 815 823
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( 0 (,) π ) ↦ ( 𝐺 ‘ 𝑠 ) ) ∈ 𝐿1 ) |
825 |
803 824
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( 0 (,) π ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
826 |
705 77 714 699 797 825
|
itgsplitioo |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) |
827 |
704 826
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) |