| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem113.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
fourierdlem113.t |
⊢ 𝑇 = ( 2 · π ) |
| 3 |
|
fourierdlem113.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 4 |
|
fourierdlem113.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 5 |
|
fourierdlem113.l |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
| 6 |
|
fourierdlem113.r |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
| 7 |
|
fourierdlem113.p |
⊢ 𝑃 = ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 8 |
|
fourierdlem113.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 9 |
|
fourierdlem113.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 10 |
|
fourierdlem113.dvcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 11 |
|
fourierdlem113.dvlb |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ) |
| 12 |
|
fourierdlem113.dvub |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) |
| 13 |
|
fourierdlem113.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
| 14 |
|
fourierdlem113.b |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
| 15 |
|
fourierdlem113.15 |
⊢ 𝑆 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) |
| 16 |
|
fourierdlem113.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 17 |
|
fourierdlem113.exq |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) |
| 18 |
|
oveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 mod ( 2 · π ) ) = ( 𝑦 mod ( 2 · π ) ) ) |
| 19 |
18
|
eqeq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 mod ( 2 · π ) ) = 0 ↔ ( 𝑦 mod ( 2 · π ) ) = 0 ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑘 + ( 1 / 2 ) ) · 𝑤 ) = ( ( 𝑘 + ( 1 / 2 ) ) · 𝑦 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑤 ) ) = ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑦 ) ) ) |
| 22 |
|
oveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 / 2 ) = ( 𝑦 / 2 ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( sin ‘ ( 𝑤 / 2 ) ) = ( sin ‘ ( 𝑦 / 2 ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑤 = 𝑦 → ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) = ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) |
| 25 |
21 24
|
oveq12d |
⊢ ( 𝑤 = 𝑦 → ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) = ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) |
| 26 |
19 25
|
ifbieq2d |
⊢ ( 𝑤 = 𝑦 → if ( ( 𝑤 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) ) = if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) |
| 27 |
26
|
cbvmptv |
⊢ ( 𝑤 ∈ ℝ ↦ if ( ( 𝑤 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 2 · 𝑘 ) = ( 2 · 𝑚 ) ) |
| 29 |
28
|
oveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑚 ) + 1 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) = ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 + ( 1 / 2 ) ) = ( 𝑚 + ( 1 / 2 ) ) ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 + ( 1 / 2 ) ) · 𝑦 ) = ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝑘 = 𝑚 → ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑦 ) ) = ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) = ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) |
| 35 |
30 34
|
ifeq12d |
⊢ ( 𝑘 = 𝑚 → if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) = if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) |
| 36 |
35
|
mpteq2dv |
⊢ ( 𝑘 = 𝑚 → ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
| 37 |
27 36
|
eqtrid |
⊢ ( 𝑘 = 𝑚 → ( 𝑤 ∈ ℝ ↦ if ( ( 𝑤 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
| 38 |
37
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ ↦ ( 𝑤 ∈ ℝ ↦ if ( ( 𝑤 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
| 39 |
|
oveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 + ( 𝑗 · 𝑇 ) ) = ( 𝑦 + ( 𝑗 · 𝑇 ) ) ) |
| 40 |
39
|
eleq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 41 |
40
|
rexbidv |
⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 42 |
41
|
cbvrabv |
⊢ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } |
| 43 |
42
|
uneq2i |
⊢ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 44 |
43
|
fveq2i |
⊢ ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) = ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
| 45 |
44
|
oveq1i |
⊢ ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) = ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) |
| 46 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 · 𝑇 ) = ( 𝑗 · 𝑇 ) ) |
| 47 |
46
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( 𝑗 · 𝑇 ) ) ) |
| 48 |
47
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 49 |
48
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 ) |
| 50 |
49
|
a1i |
⊢ ( 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 51 |
50
|
rabbiia |
⊢ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } |
| 52 |
51
|
uneq2i |
⊢ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 53 |
|
isoeq5 |
⊢ ( ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 54 |
52 53
|
ax-mp |
⊢ ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
| 55 |
54
|
a1i |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 56 |
46
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝑤 + ( 𝑘 · 𝑇 ) ) = ( 𝑤 + ( 𝑗 · 𝑇 ) ) ) |
| 57 |
56
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 58 |
57
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 ) |
| 59 |
58
|
a1i |
⊢ ( 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) → ( ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 60 |
59
|
rabbiia |
⊢ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } |
| 61 |
60
|
uneq2i |
⊢ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 62 |
61
|
fveq2i |
⊢ ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) = ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
| 63 |
62
|
oveq1i |
⊢ ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) = ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) |
| 64 |
63
|
oveq2i |
⊢ ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) = ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) |
| 65 |
|
isoeq4 |
⊢ ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) = ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 66 |
64 65
|
ax-mp |
⊢ ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
| 67 |
66
|
a1i |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 68 |
|
isoeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 69 |
55 67 68
|
3bitrd |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 70 |
69
|
cbviotavw |
⊢ ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑤 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
| 71 |
|
pire |
⊢ π ∈ ℝ |
| 72 |
71
|
renegcli |
⊢ - π ∈ ℝ |
| 73 |
72
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
| 74 |
71
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
| 75 |
|
negpilt0 |
⊢ - π < 0 |
| 76 |
75
|
a1i |
⊢ ( 𝜑 → - π < 0 ) |
| 77 |
|
pipos |
⊢ 0 < π |
| 78 |
77
|
a1i |
⊢ ( 𝜑 → 0 < π ) |
| 79 |
|
picn |
⊢ π ∈ ℂ |
| 80 |
79
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
| 81 |
79 79
|
subnegi |
⊢ ( π − - π ) = ( π + π ) |
| 82 |
80 2 81
|
3eqtr4i |
⊢ 𝑇 = ( π − - π ) |
| 83 |
7
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 84 |
8 83
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 85 |
9 84
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 86 |
85
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 87 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 88 |
86 87
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 89 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
| 90 |
|
rnffi |
⊢ ( ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ∧ ( 0 ... 𝑀 ) ∈ Fin ) → ran 𝑄 ∈ Fin ) |
| 91 |
88 89 90
|
syl2anc |
⊢ ( 𝜑 → ran 𝑄 ∈ Fin ) |
| 92 |
7 8 9
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 93 |
|
frn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) → ran 𝑄 ⊆ ( - π [,] π ) ) |
| 94 |
92 93
|
syl |
⊢ ( 𝜑 → ran 𝑄 ⊆ ( - π [,] π ) ) |
| 95 |
85
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 96 |
95
|
simplrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = π ) |
| 97 |
|
ffun |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) → Fun 𝑄 ) |
| 98 |
92 97
|
syl |
⊢ ( 𝜑 → Fun 𝑄 ) |
| 99 |
8
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 100 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 101 |
99 100
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 102 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 103 |
101 102
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 104 |
|
fdm |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) → dom 𝑄 = ( 0 ... 𝑀 ) ) |
| 105 |
92 104
|
syl |
⊢ ( 𝜑 → dom 𝑄 = ( 0 ... 𝑀 ) ) |
| 106 |
105
|
eqcomd |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) = dom 𝑄 ) |
| 107 |
103 106
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ dom 𝑄 ) |
| 108 |
|
fvelrn |
⊢ ( ( Fun 𝑄 ∧ 𝑀 ∈ dom 𝑄 ) → ( 𝑄 ‘ 𝑀 ) ∈ ran 𝑄 ) |
| 109 |
98 107 108
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ran 𝑄 ) |
| 110 |
96 109
|
eqeltrrd |
⊢ ( 𝜑 → π ∈ ran 𝑄 ) |
| 111 |
|
eqid |
⊢ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 112 |
|
isoeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 113 |
43 61 52
|
3eqtr4ri |
⊢ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 114 |
|
isoeq5 |
⊢ ( ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) → ( 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 115 |
113 114
|
ax-mp |
⊢ ( 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
| 116 |
112 115
|
bitrdi |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 117 |
116
|
cbviotavw |
⊢ ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
| 118 |
|
eqid |
⊢ { 𝑤 ∈ ( ( - π + 𝑋 ) (,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑤 ∈ ( ( - π + 𝑋 ) (,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } |
| 119 |
73 74 76 78 82 91 94 110 16 4 17 111 117 118
|
fourierdlem51 |
⊢ ( 𝜑 → 𝑋 ∈ ran ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑤 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 120 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 121 |
120
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ℝ ⊆ ℂ ) |
| 122 |
|
ioossre |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
| 123 |
122
|
a1i |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 124 |
1 123
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
| 125 |
120
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 126 |
124 125
|
fssd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 128 |
122
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 129 |
1 125
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 130 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 131 |
|
ssid |
⊢ ℝ ⊆ ℝ |
| 132 |
131
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ℝ ⊆ ℝ ) |
| 133 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 134 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 135 |
133 134
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 136 |
121 130 132 128 135
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 137 |
136
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = dom ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 138 |
|
ioontr |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 139 |
138
|
reseq2i |
⊢ ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 140 |
139
|
dmeqi |
⊢ dom ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 141 |
140
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 142 |
|
cncff |
⊢ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 143 |
|
fdm |
⊢ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ → dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 144 |
10 142 143
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 145 |
137 141 144
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 146 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ∧ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) ∧ dom ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 147 |
121 127 128 145 146
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 148 |
128 121
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 149 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 150 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 151 |
150
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 152 |
149 151
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 153 |
152
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 154 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 155 |
154
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 156 |
149 155
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 157 |
85
|
simprrd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 158 |
157
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 159 |
133 153 156 158
|
lptioo1cn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 160 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
| 161 |
131
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
| 162 |
125 129 161
|
dvbss |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) ⊆ ℝ ) |
| 163 |
|
dvfre |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 164 |
1 161 163
|
syl2anc |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 165 |
|
0re |
⊢ 0 ∈ ℝ |
| 166 |
72 165 71
|
lttri |
⊢ ( ( - π < 0 ∧ 0 < π ) → - π < π ) |
| 167 |
75 77 166
|
mp2an |
⊢ - π < π |
| 168 |
167
|
a1i |
⊢ ( 𝜑 → - π < π ) |
| 169 |
95
|
simplld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = - π ) |
| 170 |
10 142
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 171 |
170 148 159 11 133
|
ellimciota |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℩ 𝑥 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 172 |
156
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 173 |
133 172 152 158
|
lptioo2cn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 174 |
170 148 173 12 133
|
ellimciota |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℩ 𝑥 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 175 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → 𝐹 : ℝ ⟶ ℂ ) |
| 176 |
|
zre |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) |
| 177 |
176
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
| 178 |
|
2re |
⊢ 2 ∈ ℝ |
| 179 |
178 71
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
| 180 |
179
|
a1i |
⊢ ( 𝜑 → ( 2 · π ) ∈ ℝ ) |
| 181 |
2 180
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → 𝑇 ∈ ℝ ) |
| 183 |
177 182
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝑘 · 𝑇 ) ∈ ℝ ) |
| 184 |
175
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
| 185 |
182
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 186 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑘 ∈ ℤ ) |
| 187 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℝ ) |
| 188 |
3
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 189 |
184 185 186 187 188
|
fperiodmul |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑡 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑡 ) ) |
| 190 |
|
eqid |
⊢ ( ℝ D 𝐹 ) = ( ℝ D 𝐹 ) |
| 191 |
175 183 189 190
|
fperdvper |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ dom ( ℝ D 𝐹 ) ) → ( ( 𝑡 + ( 𝑘 · 𝑇 ) ) ∈ dom ( ℝ D 𝐹 ) ∧ ( ( ℝ D 𝐹 ) ‘ ( 𝑡 + ( 𝑘 · 𝑇 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
| 192 |
191
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom ( ℝ D 𝐹 ) ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑡 + ( 𝑘 · 𝑇 ) ) ∈ dom ( ℝ D 𝐹 ) ∧ ( ( ℝ D 𝐹 ) ‘ ( 𝑡 + ( 𝑘 · 𝑇 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
| 193 |
192
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom ( ℝ D 𝐹 ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝑡 + ( 𝑘 · 𝑇 ) ) ∈ dom ( ℝ D 𝐹 ) ) |
| 194 |
192
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom ( ℝ D 𝐹 ) ) ∧ 𝑘 ∈ ℤ ) → ( ( ℝ D 𝐹 ) ‘ ( 𝑡 + ( 𝑘 · 𝑇 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
| 195 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝑖 ) ) |
| 196 |
|
oveq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 + 1 ) = ( 𝑖 + 1 ) ) |
| 197 |
196
|
fveq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 198 |
195 197
|
oveq12d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 199 |
198
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 200 |
|
eqid |
⊢ ( 𝑡 ∈ ℝ ↦ ( 𝑡 + ( ( ⌊ ‘ ( ( π − 𝑡 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( 𝑡 + ( ( ⌊ ‘ ( ( π − 𝑡 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 201 |
162 164 73 74 168 82 8 88 169 96 10 171 174 193 194 199 200
|
fourierdlem71 |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 202 |
201
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 203 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 204 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 |
| 205 |
203 204
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 206 |
136 139
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 207 |
206
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) = ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) |
| 208 |
|
fvres |
⊢ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
| 209 |
207 208
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
| 210 |
209
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
| 211 |
210
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
| 212 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 213 |
|
ssdmres |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom ( ℝ D 𝐹 ) ↔ dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 214 |
144 213
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 215 |
214
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 216 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 217 |
215 216
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ dom ( ℝ D 𝐹 ) ) |
| 218 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ∧ 𝑡 ∈ dom ( ℝ D 𝐹 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 219 |
212 217 218
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 220 |
211 219
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 221 |
220
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
| 222 |
205 221
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ∀ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 223 |
222
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 → ∀ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
| 224 |
223
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
| 225 |
202 224
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 226 |
156 152 160 145 225
|
ioodvbdlimc1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ) |
| 227 |
127 148 159 226 133
|
ellimciota |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℩ 𝑦 𝑦 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 228 |
156 152 160 145 225
|
ioodvbdlimc2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) |
| 229 |
127 148 173 228 133
|
ellimciota |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℩ 𝑦 𝑦 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 230 |
|
frel |
⊢ ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ → Rel ( ℝ D 𝐹 ) ) |
| 231 |
164 230
|
syl |
⊢ ( 𝜑 → Rel ( ℝ D 𝐹 ) ) |
| 232 |
|
resindm |
⊢ ( Rel ( ℝ D 𝐹 ) → ( ( ℝ D 𝐹 ) ↾ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( -∞ (,) 𝑋 ) ) ) |
| 233 |
231 232
|
syl |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( -∞ (,) 𝑋 ) ) ) |
| 234 |
|
inss2 |
⊢ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ dom ( ℝ D 𝐹 ) |
| 235 |
234
|
a1i |
⊢ ( 𝜑 → ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 236 |
164 235
|
fssresd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ) : ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ⟶ ℝ ) |
| 237 |
233 236
|
feq1dd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( -∞ (,) 𝑋 ) ) : ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ⟶ ℝ ) |
| 238 |
237 125
|
fssd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( -∞ (,) 𝑋 ) ) : ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ⟶ ℂ ) |
| 239 |
|
ioosscn |
⊢ ( -∞ (,) 𝑋 ) ⊆ ℂ |
| 240 |
|
ssinss1 |
⊢ ( ( -∞ (,) 𝑋 ) ⊆ ℂ → ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ ℂ ) |
| 241 |
239 240
|
ax-mp |
⊢ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ ℂ |
| 242 |
241
|
a1i |
⊢ ( 𝜑 → ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ ℂ ) |
| 243 |
|
3simpb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝜑 ∧ 𝑘 ∈ ℤ ) ) |
| 244 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ∧ 𝑘 ∈ ℤ ) → 𝑥 ∈ dom ( ℝ D 𝐹 ) ) |
| 245 |
175
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
| 246 |
182
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 247 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℤ ) |
| 248 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 249 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ℝ ↔ 𝑦 ∈ ℝ ) ) |
| 250 |
249
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ↔ ( 𝜑 ∧ 𝑦 ∈ ℝ ) ) ) |
| 251 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) |
| 252 |
251
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) ) |
| 253 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 254 |
252 253
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 255 |
250 254
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 256 |
255 3
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 257 |
256
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 258 |
245 246 247 248 257
|
fperiodmul |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 259 |
175 183 258 190
|
fperdvper |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom ( ℝ D 𝐹 ) ∧ ( ( ℝ D 𝐹 ) ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 260 |
243 244 259
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom ( ℝ D 𝐹 ) ∧ ( ( ℝ D 𝐹 ) ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 261 |
260
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom ( ℝ D 𝐹 ) ) |
| 262 |
|
oveq2 |
⊢ ( 𝑤 = 𝑥 → ( π − 𝑤 ) = ( π − 𝑥 ) ) |
| 263 |
262
|
oveq1d |
⊢ ( 𝑤 = 𝑥 → ( ( π − 𝑤 ) / 𝑇 ) = ( ( π − 𝑥 ) / 𝑇 ) ) |
| 264 |
263
|
fveq2d |
⊢ ( 𝑤 = 𝑥 → ( ⌊ ‘ ( ( π − 𝑤 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) ) |
| 265 |
264
|
oveq1d |
⊢ ( 𝑤 = 𝑥 → ( ( ⌊ ‘ ( ( π − 𝑤 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
| 266 |
265
|
cbvmptv |
⊢ ( 𝑤 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑥 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
| 267 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( 𝑤 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( 𝑤 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑥 ) ) ) |
| 268 |
73 74 168 82 261 4 266 267 7 8 9 214
|
fourierdlem41 |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ( 𝑦 < 𝑋 ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) ∧ ∃ 𝑦 ∈ ℝ ( 𝑋 < 𝑦 ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) ) ) |
| 269 |
268
|
simpld |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ( 𝑦 < 𝑋 ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) ) |
| 270 |
133
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 271 |
270
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 272 |
241
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ ℂ ) |
| 273 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 274 |
273
|
a1i |
⊢ ( 𝑦 ∈ ℝ → -∞ ∈ ℝ* ) |
| 275 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
| 276 |
|
mnflt |
⊢ ( 𝑦 ∈ ℝ → -∞ < 𝑦 ) |
| 277 |
274 275 276
|
xrltled |
⊢ ( 𝑦 ∈ ℝ → -∞ ≤ 𝑦 ) |
| 278 |
|
iooss1 |
⊢ ( ( -∞ ∈ ℝ* ∧ -∞ ≤ 𝑦 ) → ( 𝑦 (,) 𝑋 ) ⊆ ( -∞ (,) 𝑋 ) ) |
| 279 |
274 277 278
|
syl2anc |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 (,) 𝑋 ) ⊆ ( -∞ (,) 𝑋 ) ) |
| 280 |
279
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( 𝑦 (,) 𝑋 ) ⊆ ( -∞ (,) 𝑋 ) ) |
| 281 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 282 |
280 281
|
ssind |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( 𝑦 (,) 𝑋 ) ⊆ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ) |
| 283 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 284 |
283
|
lpss3 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ ℂ ∧ ( 𝑦 (,) 𝑋 ) ⊆ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ) → ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑦 (,) 𝑋 ) ) ⊆ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ) ) |
| 285 |
271 272 282 284
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑦 (,) 𝑋 ) ) ⊆ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ) ) |
| 286 |
285
|
3adant3l |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 < 𝑋 ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑦 (,) 𝑋 ) ) ⊆ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ) ) |
| 287 |
275
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 < 𝑋 ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → 𝑦 ∈ ℝ* ) |
| 288 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 < 𝑋 ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → 𝑋 ∈ ℝ ) |
| 289 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 < 𝑋 ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → 𝑦 < 𝑋 ) |
| 290 |
133 287 288 289
|
lptioo2cn |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 < 𝑋 ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑦 (,) 𝑋 ) ) ) |
| 291 |
286 290
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 < 𝑋 ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ) ) |
| 292 |
291
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ( 𝑦 < 𝑋 ∧ ( 𝑦 (,) 𝑋 ) ⊆ dom ( ℝ D 𝐹 ) ) → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ) ) ) |
| 293 |
269 292
|
mpd |
⊢ ( 𝜑 → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 ) ∩ dom ( ℝ D 𝐹 ) ) ) ) |
| 294 |
260
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( ( ℝ D 𝐹 ) ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 295 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( π − 𝑦 ) = ( π − 𝑥 ) ) |
| 296 |
295
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( ( π − 𝑦 ) / 𝑇 ) = ( ( π − 𝑥 ) / 𝑇 ) ) |
| 297 |
296
|
fveq2d |
⊢ ( 𝑦 = 𝑥 → ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) ) |
| 298 |
297
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
| 299 |
298
|
cbvmptv |
⊢ ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑥 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
| 300 |
|
id |
⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) |
| 301 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑧 ) = ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑥 ) ) |
| 302 |
300 301
|
oveq12d |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 + ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑧 ) ) = ( 𝑥 + ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑥 ) ) ) |
| 303 |
302
|
cbvmptv |
⊢ ( 𝑧 ∈ ℝ ↦ ( 𝑧 + ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑥 ) ) ) |
| 304 |
73 74 168 7 82 8 9 162 164 261 294 10 174 4 299 303
|
fourierdlem49 |
⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ≠ ∅ ) |
| 305 |
238 242 293 304 133
|
ellimciota |
⊢ ( 𝜑 → ( ℩ 𝑥 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) ∈ ( ( ( ℝ D 𝐹 ) ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
| 306 |
|
resindm |
⊢ ( Rel ( ℝ D 𝐹 ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) +∞ ) ) ) |
| 307 |
231 306
|
syl |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) +∞ ) ) ) |
| 308 |
|
inss2 |
⊢ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ dom ( ℝ D 𝐹 ) |
| 309 |
308
|
a1i |
⊢ ( 𝜑 → ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 310 |
164 309
|
fssresd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ) : ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ⟶ ℝ ) |
| 311 |
307 310
|
feq1dd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) +∞ ) ) : ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ⟶ ℝ ) |
| 312 |
311 125
|
fssd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) +∞ ) ) : ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ⟶ ℂ ) |
| 313 |
|
ioosscn |
⊢ ( 𝑋 (,) +∞ ) ⊆ ℂ |
| 314 |
|
ssinss1 |
⊢ ( ( 𝑋 (,) +∞ ) ⊆ ℂ → ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ ℂ ) |
| 315 |
313 314
|
ax-mp |
⊢ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ ℂ |
| 316 |
315
|
a1i |
⊢ ( 𝜑 → ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ ℂ ) |
| 317 |
268
|
simprd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ( 𝑋 < 𝑦 ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) ) |
| 318 |
270
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 319 |
315
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ ℂ ) |
| 320 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 321 |
320
|
a1i |
⊢ ( 𝑦 ∈ ℝ → +∞ ∈ ℝ* ) |
| 322 |
|
ltpnf |
⊢ ( 𝑦 ∈ ℝ → 𝑦 < +∞ ) |
| 323 |
275 321 322
|
xrltled |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ≤ +∞ ) |
| 324 |
|
iooss2 |
⊢ ( ( +∞ ∈ ℝ* ∧ 𝑦 ≤ +∞ ) → ( 𝑋 (,) 𝑦 ) ⊆ ( 𝑋 (,) +∞ ) ) |
| 325 |
321 323 324
|
syl2anc |
⊢ ( 𝑦 ∈ ℝ → ( 𝑋 (,) 𝑦 ) ⊆ ( 𝑋 (,) +∞ ) ) |
| 326 |
325
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( 𝑋 (,) 𝑦 ) ⊆ ( 𝑋 (,) +∞ ) ) |
| 327 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 328 |
326 327
|
ssind |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( 𝑋 (,) 𝑦 ) ⊆ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ) |
| 329 |
283
|
lpss3 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ⊆ ℂ ∧ ( 𝑋 (,) 𝑦 ) ⊆ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ) → ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) 𝑦 ) ) ⊆ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ) ) |
| 330 |
318 319 328 329
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) 𝑦 ) ) ⊆ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ) ) |
| 331 |
330
|
3adant3l |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 < 𝑦 ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) 𝑦 ) ) ⊆ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ) ) |
| 332 |
275
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 < 𝑦 ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → 𝑦 ∈ ℝ* ) |
| 333 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 < 𝑦 ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → 𝑋 ∈ ℝ ) |
| 334 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 < 𝑦 ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → 𝑋 < 𝑦 ) |
| 335 |
133 332 333 334
|
lptioo1cn |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 < 𝑦 ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) 𝑦 ) ) ) |
| 336 |
331 335
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ( 𝑋 < 𝑦 ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) ) → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ) ) |
| 337 |
336
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ( 𝑋 < 𝑦 ∧ ( 𝑋 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ) ) ) |
| 338 |
317 337
|
mpd |
⊢ ( 𝜑 → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ ) ∩ dom ( ℝ D 𝐹 ) ) ) ) |
| 339 |
|
biid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑤 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑤 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
| 340 |
73 74 168 7 82 8 9 164 261 294 10 171 4 299 303 339
|
fourierdlem48 |
⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) |
| 341 |
312 316 338 340 133
|
ellimciota |
⊢ ( 𝜑 → ( ℩ 𝑥 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) ∈ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
| 342 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 343 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 · 𝑋 ) = ( 𝑘 · 𝑋 ) ) |
| 344 |
343
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( cos ‘ ( 𝑛 · 𝑋 ) ) = ( cos ‘ ( 𝑘 · 𝑋 ) ) ) |
| 345 |
342 344
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) ) |
| 346 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐵 ‘ 𝑛 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 347 |
343
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( sin ‘ ( 𝑛 · 𝑋 ) ) = ( sin ‘ ( 𝑘 · 𝑋 ) ) ) |
| 348 |
346 347
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) |
| 349 |
345 348
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
| 350 |
349
|
cbvsumv |
⊢ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) |
| 351 |
|
oveq2 |
⊢ ( 𝑗 = 𝑚 → ( 1 ... 𝑗 ) = ( 1 ... 𝑚 ) ) |
| 352 |
351
|
eqcomd |
⊢ ( 𝑗 = 𝑚 → ( 1 ... 𝑚 ) = ( 1 ... 𝑗 ) ) |
| 353 |
352
|
sumeq1d |
⊢ ( 𝑗 = 𝑚 → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑗 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
| 354 |
350 353
|
eqtr2id |
⊢ ( 𝑗 = 𝑚 → Σ 𝑘 ∈ ( 1 ... 𝑗 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) |
| 355 |
354
|
oveq2d |
⊢ ( 𝑗 = 𝑚 → ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑘 ∈ ( 1 ... 𝑗 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) = ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) |
| 356 |
355
|
cbvmptv |
⊢ ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑘 ∈ ( 1 ... 𝑗 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) |
| 357 |
|
fdm |
⊢ ( 𝐹 : ℝ ⟶ ℝ → dom 𝐹 = ℝ ) |
| 358 |
1 357
|
syl |
⊢ ( 𝜑 → dom 𝐹 = ℝ ) |
| 359 |
358 161
|
eqsstrd |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℝ ) |
| 360 |
358
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℝ ↔ 𝐹 : ℝ ⟶ ℝ ) ) |
| 361 |
1 360
|
mpbird |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
| 362 |
359
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ dom 𝐹 ) → 𝑡 ∈ ℝ ) |
| 363 |
362
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → 𝑡 ∈ ℝ ) |
| 364 |
176
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
| 365 |
182
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → 𝑇 ∈ ℝ ) |
| 366 |
364 365
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 · 𝑇 ) ∈ ℝ ) |
| 367 |
363 366
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑡 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 368 |
358
|
eqcomd |
⊢ ( 𝜑 → ℝ = dom 𝐹 ) |
| 369 |
368
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ℝ = dom 𝐹 ) |
| 370 |
367 369
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑡 + ( 𝑘 · 𝑇 ) ) ∈ dom 𝐹 ) |
| 371 |
|
id |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝜑 ∧ 𝑘 ∈ ℤ ) ) |
| 372 |
371
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝜑 ∧ 𝑘 ∈ ℤ ) ) |
| 373 |
372 363 189
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑡 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑡 ) ) |
| 374 |
359 361 73 74 168 82 8 88 169 96 147 227 229 370 373 199 200
|
fourierdlem71 |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ℝ ∀ 𝑡 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑢 ) |
| 375 |
358
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑡 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑢 ↔ ∀ 𝑡 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑢 ) ) |
| 376 |
375
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ℝ ∀ 𝑡 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑢 ↔ ∃ 𝑢 ∈ ℝ ∀ 𝑡 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑢 ) ) |
| 377 |
374 376
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ℝ ∀ 𝑡 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑢 ) |
| 378 |
1 38 7 8 9 45 70 4 119 2 3 147 227 229 10 305 341 5 6 13 14 356 15 377 201 4
|
fourierdlem112 |
⊢ ( 𝜑 → ( seq 1 ( + , 𝑆 ) ⇝ ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ∧ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( ( 𝐿 + 𝑅 ) / 2 ) ) ) |