Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem114.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem114.t |
⊢ 𝑇 = ( 2 · π ) |
3 |
|
fourierdlem114.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
4 |
|
fourierdlem114.g |
⊢ 𝐺 = ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) |
5 |
|
fourierdlem114.dmdv |
⊢ ( 𝜑 → ( ( - π (,) π ) ∖ dom 𝐺 ) ∈ Fin ) |
6 |
|
fourierdlem114.gcn |
⊢ ( 𝜑 → 𝐺 ∈ ( dom 𝐺 –cn→ ℂ ) ) |
7 |
|
fourierdlem114.rlim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
8 |
|
fourierdlem114.llim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
9 |
|
fourierdlem114.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
10 |
|
fourierdlem114.l |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
11 |
|
fourierdlem114.r |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
12 |
|
fourierdlem114.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
13 |
|
fourierdlem114.b |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
14 |
|
fourierdlem114.s |
⊢ 𝑆 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) |
15 |
|
fourierdlem114.p |
⊢ 𝑃 = ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
16 |
|
fourierdlem114.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
17 |
|
fourierdlem114.h |
⊢ 𝐻 = ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) |
18 |
|
fourierdlem114.m |
⊢ 𝑀 = ( ( ♯ ‘ 𝐻 ) − 1 ) |
19 |
|
fourierdlem114.q |
⊢ 𝑄 = ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
20 |
|
2z |
⊢ 2 ∈ ℤ |
21 |
20
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
22 |
|
tpfi |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ Fin |
23 |
22
|
a1i |
⊢ ( 𝜑 → { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ Fin ) |
24 |
|
pire |
⊢ π ∈ ℝ |
25 |
24
|
renegcli |
⊢ - π ∈ ℝ |
26 |
25
|
rexri |
⊢ - π ∈ ℝ* |
27 |
24
|
rexri |
⊢ π ∈ ℝ* |
28 |
|
negpilt0 |
⊢ - π < 0 |
29 |
|
pipos |
⊢ 0 < π |
30 |
|
0re |
⊢ 0 ∈ ℝ |
31 |
25 30 24
|
lttri |
⊢ ( ( - π < 0 ∧ 0 < π ) → - π < π ) |
32 |
28 29 31
|
mp2an |
⊢ - π < π |
33 |
25 24 32
|
ltleii |
⊢ - π ≤ π |
34 |
|
prunioo |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π ≤ π ) → ( ( - π (,) π ) ∪ { - π , π } ) = ( - π [,] π ) ) |
35 |
26 27 33 34
|
mp3an |
⊢ ( ( - π (,) π ) ∪ { - π , π } ) = ( - π [,] π ) |
36 |
35
|
difeq1i |
⊢ ( ( ( - π (,) π ) ∪ { - π , π } ) ∖ dom 𝐺 ) = ( ( - π [,] π ) ∖ dom 𝐺 ) |
37 |
|
difundir |
⊢ ( ( ( - π (,) π ) ∪ { - π , π } ) ∖ dom 𝐺 ) = ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) |
38 |
36 37
|
eqtr3i |
⊢ ( ( - π [,] π ) ∖ dom 𝐺 ) = ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) |
39 |
|
prfi |
⊢ { - π , π } ∈ Fin |
40 |
|
diffi |
⊢ ( { - π , π } ∈ Fin → ( { - π , π } ∖ dom 𝐺 ) ∈ Fin ) |
41 |
39 40
|
mp1i |
⊢ ( 𝜑 → ( { - π , π } ∖ dom 𝐺 ) ∈ Fin ) |
42 |
|
unfi |
⊢ ( ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∈ Fin ∧ ( { - π , π } ∖ dom 𝐺 ) ∈ Fin ) → ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) ∈ Fin ) |
43 |
5 41 42
|
syl2anc |
⊢ ( 𝜑 → ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) ∈ Fin ) |
44 |
38 43
|
eqeltrid |
⊢ ( 𝜑 → ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ Fin ) |
45 |
|
unfi |
⊢ ( ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ Fin ∧ ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ Fin ) → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ∈ Fin ) |
46 |
23 44 45
|
syl2anc |
⊢ ( 𝜑 → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ∈ Fin ) |
47 |
17 46
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ Fin ) |
48 |
|
hashcl |
⊢ ( 𝐻 ∈ Fin → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
49 |
47 48
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
50 |
49
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℤ ) |
51 |
25 32
|
ltneii |
⊢ - π ≠ π |
52 |
|
hashprg |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π ≠ π ↔ ( ♯ ‘ { - π , π } ) = 2 ) ) |
53 |
25 24 52
|
mp2an |
⊢ ( - π ≠ π ↔ ( ♯ ‘ { - π , π } ) = 2 ) |
54 |
51 53
|
mpbi |
⊢ ( ♯ ‘ { - π , π } ) = 2 |
55 |
22
|
elexi |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ V |
56 |
|
ovex |
⊢ ( - π [,] π ) ∈ V |
57 |
|
difexg |
⊢ ( ( - π [,] π ) ∈ V → ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ V ) |
58 |
56 57
|
ax-mp |
⊢ ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ V |
59 |
55 58
|
unex |
⊢ ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ∈ V |
60 |
17 59
|
eqeltri |
⊢ 𝐻 ∈ V |
61 |
|
negex |
⊢ - π ∈ V |
62 |
61
|
tpid1 |
⊢ - π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } |
63 |
24
|
elexi |
⊢ π ∈ V |
64 |
63
|
tpid2 |
⊢ π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } |
65 |
|
prssi |
⊢ ( ( - π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } ∧ π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } ) → { - π , π } ⊆ { - π , π , ( 𝐸 ‘ 𝑋 ) } ) |
66 |
62 64 65
|
mp2an |
⊢ { - π , π } ⊆ { - π , π , ( 𝐸 ‘ 𝑋 ) } |
67 |
|
ssun1 |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) |
68 |
67 17
|
sseqtrri |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ 𝐻 |
69 |
66 68
|
sstri |
⊢ { - π , π } ⊆ 𝐻 |
70 |
|
hashss |
⊢ ( ( 𝐻 ∈ V ∧ { - π , π } ⊆ 𝐻 ) → ( ♯ ‘ { - π , π } ) ≤ ( ♯ ‘ 𝐻 ) ) |
71 |
60 69 70
|
mp2an |
⊢ ( ♯ ‘ { - π , π } ) ≤ ( ♯ ‘ 𝐻 ) |
72 |
71
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ { - π , π } ) ≤ ( ♯ ‘ 𝐻 ) ) |
73 |
54 72
|
eqbrtrrid |
⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝐻 ) ) |
74 |
|
eluz2 |
⊢ ( ( ♯ ‘ 𝐻 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ ( ♯ ‘ 𝐻 ) ∈ ℤ ∧ 2 ≤ ( ♯ ‘ 𝐻 ) ) ) |
75 |
21 50 73 74
|
syl3anbrc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ( ℤ≥ ‘ 2 ) ) |
76 |
|
uz2m1nn |
⊢ ( ( ♯ ‘ 𝐻 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( ♯ ‘ 𝐻 ) − 1 ) ∈ ℕ ) |
77 |
75 76
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) − 1 ) ∈ ℕ ) |
78 |
18 77
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
79 |
25
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
80 |
24
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
81 |
|
negpitopissre |
⊢ ( - π (,] π ) ⊆ ℝ |
82 |
32
|
a1i |
⊢ ( 𝜑 → - π < π ) |
83 |
|
picn |
⊢ π ∈ ℂ |
84 |
83
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
85 |
83 83
|
subnegi |
⊢ ( π − - π ) = ( π + π ) |
86 |
84 2 85
|
3eqtr4i |
⊢ 𝑇 = ( π − - π ) |
87 |
79 80 82 86 16
|
fourierdlem4 |
⊢ ( 𝜑 → 𝐸 : ℝ ⟶ ( - π (,] π ) ) |
88 |
87 9
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ( - π (,] π ) ) |
89 |
81 88
|
sselid |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) |
90 |
79 80 89
|
3jca |
⊢ ( 𝜑 → ( - π ∈ ℝ ∧ π ∈ ℝ ∧ ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) ) |
91 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑋 ) ∈ V |
92 |
61 63 91
|
tpss |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ∧ ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) ↔ { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ℝ ) |
93 |
90 92
|
sylib |
⊢ ( 𝜑 → { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ℝ ) |
94 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
95 |
25 24 94
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
96 |
|
ssdifss |
⊢ ( ( - π [,] π ) ⊆ ℝ → ( ( - π [,] π ) ∖ dom 𝐺 ) ⊆ ℝ ) |
97 |
95 96
|
mp1i |
⊢ ( 𝜑 → ( ( - π [,] π ) ∖ dom 𝐺 ) ⊆ ℝ ) |
98 |
93 97
|
unssd |
⊢ ( 𝜑 → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ⊆ ℝ ) |
99 |
17 98
|
eqsstrid |
⊢ ( 𝜑 → 𝐻 ⊆ ℝ ) |
100 |
47 99 19 18
|
fourierdlem36 |
⊢ ( 𝜑 → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
101 |
|
isof1o |
⊢ ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) → 𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻 ) |
102 |
|
f1of |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻 → 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) |
103 |
100 101 102
|
3syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) |
104 |
103 99
|
fssd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
105 |
|
reex |
⊢ ℝ ∈ V |
106 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
107 |
105 106
|
elmap |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
108 |
104 107
|
sylibr |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
109 |
|
fveq2 |
⊢ ( 0 = 𝑖 → ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ 𝑖 ) ) |
110 |
109
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 = 𝑖 ) → ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ 𝑖 ) ) |
111 |
104
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
112 |
111
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
113 |
112
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 = 𝑖 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
114 |
110 113
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 = 𝑖 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
115 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℤ ) |
116 |
115
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℝ ) |
117 |
116
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 𝑖 ∈ ℝ ) |
118 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 0 ≤ 𝑖 ) |
119 |
118
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 0 ≤ 𝑖 ) |
120 |
|
neqne |
⊢ ( ¬ 0 = 𝑖 → 0 ≠ 𝑖 ) |
121 |
120
|
necomd |
⊢ ( ¬ 0 = 𝑖 → 𝑖 ≠ 0 ) |
122 |
121
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 𝑖 ≠ 0 ) |
123 |
117 119 122
|
ne0gt0d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 0 < 𝑖 ) |
124 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
125 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
126 |
124 125
|
sseqtri |
⊢ ℕ ⊆ ( ℤ≥ ‘ 0 ) |
127 |
126 78
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
128 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
129 |
127 128
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
130 |
103 129
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ 𝐻 ) |
131 |
99 130
|
sseldd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
132 |
131
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
133 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
134 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → 0 < 𝑖 ) |
135 |
100
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
136 |
129
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 0 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ) |
137 |
136
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 0 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ) |
138 |
|
isorel |
⊢ ( ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ∧ ( 0 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ) → ( 0 < 𝑖 ↔ ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ 𝑖 ) ) ) |
139 |
135 137 138
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 0 < 𝑖 ↔ ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ 𝑖 ) ) ) |
140 |
134 139
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ 𝑖 ) ) |
141 |
132 133 140
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
142 |
123 141
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
143 |
114 142
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
144 |
143
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
145 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 𝑖 ) = - π ) |
146 |
144 145
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) ≤ - π ) |
147 |
79
|
rexrd |
⊢ ( 𝜑 → - π ∈ ℝ* ) |
148 |
80
|
rexrd |
⊢ ( 𝜑 → π ∈ ℝ* ) |
149 |
|
lbicc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π ≤ π ) → - π ∈ ( - π [,] π ) ) |
150 |
26 27 33 149
|
mp3an |
⊢ - π ∈ ( - π [,] π ) |
151 |
150
|
a1i |
⊢ ( 𝜑 → - π ∈ ( - π [,] π ) ) |
152 |
|
ubicc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π ≤ π ) → π ∈ ( - π [,] π ) ) |
153 |
26 27 33 152
|
mp3an |
⊢ π ∈ ( - π [,] π ) |
154 |
153
|
a1i |
⊢ ( 𝜑 → π ∈ ( - π [,] π ) ) |
155 |
|
iocssicc |
⊢ ( - π (,] π ) ⊆ ( - π [,] π ) |
156 |
155 88
|
sselid |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ( - π [,] π ) ) |
157 |
|
tpssi |
⊢ ( ( - π ∈ ( - π [,] π ) ∧ π ∈ ( - π [,] π ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( - π [,] π ) ) → { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ( - π [,] π ) ) |
158 |
151 154 156 157
|
syl3anc |
⊢ ( 𝜑 → { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ( - π [,] π ) ) |
159 |
|
difssd |
⊢ ( 𝜑 → ( ( - π [,] π ) ∖ dom 𝐺 ) ⊆ ( - π [,] π ) ) |
160 |
158 159
|
unssd |
⊢ ( 𝜑 → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ⊆ ( - π [,] π ) ) |
161 |
17 160
|
eqsstrid |
⊢ ( 𝜑 → 𝐻 ⊆ ( - π [,] π ) ) |
162 |
161 130
|
sseldd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ( - π [,] π ) ) |
163 |
|
iccgelb |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ ( 𝑄 ‘ 0 ) ∈ ( - π [,] π ) ) → - π ≤ ( 𝑄 ‘ 0 ) ) |
164 |
147 148 162 163
|
syl3anc |
⊢ ( 𝜑 → - π ≤ ( 𝑄 ‘ 0 ) ) |
165 |
164
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → - π ≤ ( 𝑄 ‘ 0 ) ) |
166 |
131
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
167 |
25
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → - π ∈ ℝ ) |
168 |
166 167
|
letri3d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( ( 𝑄 ‘ 0 ) = - π ↔ ( ( 𝑄 ‘ 0 ) ≤ - π ∧ - π ≤ ( 𝑄 ‘ 0 ) ) ) ) |
169 |
146 165 168
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) = - π ) |
170 |
68 62
|
sselii |
⊢ - π ∈ 𝐻 |
171 |
|
f1ofo |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻 → 𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻 ) |
172 |
101 171
|
syl |
⊢ ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) → 𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻 ) |
173 |
|
forn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻 → ran 𝑄 = 𝐻 ) |
174 |
100 172 173
|
3syl |
⊢ ( 𝜑 → ran 𝑄 = 𝐻 ) |
175 |
170 174
|
eleqtrrid |
⊢ ( 𝜑 → - π ∈ ran 𝑄 ) |
176 |
|
ffn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 → 𝑄 Fn ( 0 ... 𝑀 ) ) |
177 |
|
fvelrnb |
⊢ ( 𝑄 Fn ( 0 ... 𝑀 ) → ( - π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = - π ) ) |
178 |
103 176 177
|
3syl |
⊢ ( 𝜑 → ( - π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = - π ) ) |
179 |
175 178
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = - π ) |
180 |
169 179
|
r19.29a |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = - π ) |
181 |
68 64
|
sselii |
⊢ π ∈ 𝐻 |
182 |
181 174
|
eleqtrrid |
⊢ ( 𝜑 → π ∈ ran 𝑄 ) |
183 |
|
fvelrnb |
⊢ ( 𝑄 Fn ( 0 ... 𝑀 ) → ( π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π ) ) |
184 |
103 176 183
|
3syl |
⊢ ( 𝜑 → ( π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π ) ) |
185 |
182 184
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π ) |
186 |
103 161
|
fssd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
187 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
188 |
127 187
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
189 |
186 188
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( - π [,] π ) ) |
190 |
|
iccleub |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ ( 𝑄 ‘ 𝑀 ) ∈ ( - π [,] π ) ) → ( 𝑄 ‘ 𝑀 ) ≤ π ) |
191 |
147 148 189 190
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ≤ π ) |
192 |
191
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑀 ) ≤ π ) |
193 |
|
id |
⊢ ( ( 𝑄 ‘ 𝑖 ) = π → ( 𝑄 ‘ 𝑖 ) = π ) |
194 |
193
|
eqcomd |
⊢ ( ( 𝑄 ‘ 𝑖 ) = π → π = ( 𝑄 ‘ 𝑖 ) ) |
195 |
194
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → π = ( 𝑄 ‘ 𝑖 ) ) |
196 |
112
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
197 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
198 |
197
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
199 |
196 198
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
200 |
116
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑖 ∈ ℝ ) |
201 |
|
elfzel2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℤ ) |
202 |
201
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℝ ) |
203 |
202
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑀 ∈ ℝ ) |
204 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ≤ 𝑀 ) |
205 |
204
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑖 ≤ 𝑀 ) |
206 |
|
neqne |
⊢ ( ¬ 𝑖 = 𝑀 → 𝑖 ≠ 𝑀 ) |
207 |
206
|
necomd |
⊢ ( ¬ 𝑖 = 𝑀 → 𝑀 ≠ 𝑖 ) |
208 |
207
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑀 ≠ 𝑖 ) |
209 |
200 203 205 208
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑖 < 𝑀 ) |
210 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
211 |
95 189
|
sselid |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
212 |
211
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
213 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → 𝑖 < 𝑀 ) |
214 |
100
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
215 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
216 |
188
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
217 |
215 216
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑀 ∈ ( 0 ... 𝑀 ) ) ) |
218 |
217
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑀 ∈ ( 0 ... 𝑀 ) ) ) |
219 |
|
isorel |
⊢ ( ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ∧ ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑀 ∈ ( 0 ... 𝑀 ) ) ) → ( 𝑖 < 𝑀 ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ 𝑀 ) ) ) |
220 |
214 218 219
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑖 < 𝑀 ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ 𝑀 ) ) ) |
221 |
213 220
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ 𝑀 ) ) |
222 |
210 212 221
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
223 |
209 222
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
224 |
199 223
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
225 |
224
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
226 |
195 225
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → π ≤ ( 𝑄 ‘ 𝑀 ) ) |
227 |
211
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
228 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → π ∈ ℝ ) |
229 |
227 228
|
letri3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( ( 𝑄 ‘ 𝑀 ) = π ↔ ( ( 𝑄 ‘ 𝑀 ) ≤ π ∧ π ≤ ( 𝑄 ‘ 𝑀 ) ) ) ) |
230 |
192 226 229
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑀 ) = π ) |
231 |
230
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π → ( 𝑄 ‘ 𝑀 ) = π ) ) |
232 |
185 231
|
mpd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = π ) |
233 |
|
elfzoelz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ℤ ) |
234 |
233
|
zred |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ℝ ) |
235 |
234
|
ltp1d |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 < ( 𝑖 + 1 ) ) |
236 |
235
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 < ( 𝑖 + 1 ) ) |
237 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
238 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
239 |
237 238
|
jca |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
240 |
|
isorel |
⊢ ( ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ∧ ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) → ( 𝑖 < ( 𝑖 + 1 ) ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
241 |
100 239 240
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 < ( 𝑖 + 1 ) ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
242 |
236 241
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
243 |
242
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
244 |
180 232 243
|
jca31 |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
245 |
15
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
246 |
78 245
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
247 |
108 244 246
|
mpbir2and |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
248 |
4
|
reseq1i |
⊢ ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
249 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ* ) |
250 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ* ) |
251 |
186
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
252 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
253 |
249 250 251 252
|
fourierdlem27 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π (,) π ) ) |
254 |
253
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
255 |
248 254
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
256 |
6 15 78 247 17 174
|
fourierdlem38 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
257 |
255 256
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
258 |
255
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
259 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐺 ∈ ( dom 𝐺 –cn→ ℂ ) ) |
260 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
261 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
262 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
263 |
262 101 102
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) |
264 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) |
265 |
262 172 173
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ran 𝑄 = 𝐻 ) |
266 |
259 260 261 262 263 252 242 253 264 17 265
|
fourierdlem46 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ∧ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) ) |
267 |
266
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ) |
268 |
258 267
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ) |
269 |
255
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
270 |
266
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) |
271 |
269 270
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) |
272 |
91
|
tpid3 |
⊢ ( 𝐸 ‘ 𝑋 ) ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } |
273 |
|
elun1 |
⊢ ( ( 𝐸 ‘ 𝑋 ) ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } → ( 𝐸 ‘ 𝑋 ) ∈ ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) |
274 |
272 273
|
mp1i |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) |
275 |
274 17
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ 𝐻 ) |
276 |
275 174
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ran 𝑄 ) |
277 |
1 2 3 9 10 11 15 78 247 257 268 271 12 13 14 16 276
|
fourierdlem113 |
⊢ ( 𝜑 → ( seq 1 ( + , 𝑆 ) ⇝ ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ∧ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( ( 𝐿 + 𝑅 ) / 2 ) ) ) |