| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem13.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | fourierdlem13.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fourierdlem13.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 4 |  | fourierdlem13.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 5 |  | fourierdlem13.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 6 |  | fourierdlem13.v | ⊢ ( 𝜑  →  𝑉  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 7 |  | fourierdlem13.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 8 |  | fourierdlem13.q | ⊢ 𝑄  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  𝑄  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 ) ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  =  𝐼 )  →  𝑖  =  𝐼 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑖  =  𝐼 )  →  ( 𝑉 ‘ 𝑖 )  =  ( 𝑉 ‘ 𝐼 ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  =  𝐼 )  →  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 )  =  ( ( 𝑉 ‘ 𝐼 )  −  𝑋 ) ) | 
						
							| 13 | 4 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑉  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑉  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑉 ‘ 0 )  =  ( 𝐴  +  𝑋 )  ∧  ( 𝑉 ‘ 𝑀 )  =  ( 𝐵  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 )  <  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 14 | 5 13 | syl | ⊢ ( 𝜑  →  ( 𝑉  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑉  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑉 ‘ 0 )  =  ( 𝐴  +  𝑋 )  ∧  ( 𝑉 ‘ 𝑀 )  =  ( 𝐵  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 )  <  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 15 | 6 14 | mpbid | ⊢ ( 𝜑  →  ( 𝑉  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑉 ‘ 0 )  =  ( 𝐴  +  𝑋 )  ∧  ( 𝑉 ‘ 𝑀 )  =  ( 𝐵  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 )  <  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( 𝜑  →  𝑉  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 17 |  | elmapi | ⊢ ( 𝑉  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 19 | 18 7 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑉 ‘ 𝐼 )  ∈  ℝ ) | 
						
							| 20 | 19 3 | resubcld | ⊢ ( 𝜑  →  ( ( 𝑉 ‘ 𝐼 )  −  𝑋 )  ∈  ℝ ) | 
						
							| 21 | 9 12 7 20 | fvmptd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝐼 )  =  ( ( 𝑉 ‘ 𝐼 )  −  𝑋 ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑄 ‘ 𝐼 ) )  =  ( 𝑋  +  ( ( 𝑉 ‘ 𝐼 )  −  𝑋 ) ) ) | 
						
							| 23 | 3 | recnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 24 | 19 | recnd | ⊢ ( 𝜑  →  ( 𝑉 ‘ 𝐼 )  ∈  ℂ ) | 
						
							| 25 | 23 24 | pncan3d | ⊢ ( 𝜑  →  ( 𝑋  +  ( ( 𝑉 ‘ 𝐼 )  −  𝑋 ) )  =  ( 𝑉 ‘ 𝐼 ) ) | 
						
							| 26 | 22 25 | eqtr2d | ⊢ ( 𝜑  →  ( 𝑉 ‘ 𝐼 )  =  ( 𝑋  +  ( 𝑄 ‘ 𝐼 ) ) ) | 
						
							| 27 | 21 26 | jca | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝐼 )  =  ( ( 𝑉 ‘ 𝐼 )  −  𝑋 )  ∧  ( 𝑉 ‘ 𝐼 )  =  ( 𝑋  +  ( 𝑄 ‘ 𝐼 ) ) ) ) |