Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem13.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
fourierdlem13.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
fourierdlem13.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
4 |
|
fourierdlem13.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
5 |
|
fourierdlem13.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
6 |
|
fourierdlem13.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ) |
7 |
|
fourierdlem13.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... 𝑀 ) ) |
8 |
|
fourierdlem13.q |
⊢ 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝐼 ) → 𝑖 = 𝐼 ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝐼 ) → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ 𝐼 ) ) |
12 |
11
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝐼 ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝐼 ) − 𝑋 ) ) |
13 |
4
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( 𝐴 + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( 𝐵 + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( 𝐴 + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( 𝐵 + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
15 |
6 14
|
mpbid |
⊢ ( 𝜑 → ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( 𝐴 + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( 𝐵 + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
17 |
|
elmapi |
⊢ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
19 |
18 7
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐼 ) ∈ ℝ ) |
20 |
19 3
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝐼 ) − 𝑋 ) ∈ ℝ ) |
21 |
9 12 7 20
|
fvmptd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) = ( ( 𝑉 ‘ 𝐼 ) − 𝑋 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( 𝑄 ‘ 𝐼 ) ) = ( 𝑋 + ( ( 𝑉 ‘ 𝐼 ) − 𝑋 ) ) ) |
23 |
3
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
24 |
19
|
recnd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐼 ) ∈ ℂ ) |
25 |
23 24
|
pncan3d |
⊢ ( 𝜑 → ( 𝑋 + ( ( 𝑉 ‘ 𝐼 ) − 𝑋 ) ) = ( 𝑉 ‘ 𝐼 ) ) |
26 |
22 25
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐼 ) = ( 𝑋 + ( 𝑄 ‘ 𝐼 ) ) ) |
27 |
21 26
|
jca |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) = ( ( 𝑉 ‘ 𝐼 ) − 𝑋 ) ∧ ( 𝑉 ‘ 𝐼 ) = ( 𝑋 + ( 𝑄 ‘ 𝐼 ) ) ) ) |