| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem14.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | fourierdlem14.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fourierdlem14.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 4 |  | fourierdlem14.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 5 |  | fourierdlem14.o | ⊢ 𝑂  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 6 |  | fourierdlem14.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | fourierdlem14.v | ⊢ ( 𝜑  →  𝑉  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 8 |  | fourierdlem14.q | ⊢ 𝑄  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 9 | 4 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑉  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑉  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑉 ‘ 0 )  =  ( 𝐴  +  𝑋 )  ∧  ( 𝑉 ‘ 𝑀 )  =  ( 𝐵  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 )  <  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 10 | 6 9 | syl | ⊢ ( 𝜑  →  ( 𝑉  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑉  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑉 ‘ 0 )  =  ( 𝐴  +  𝑋 )  ∧  ( 𝑉 ‘ 𝑀 )  =  ( 𝐵  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 )  <  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 11 | 7 10 | mpbid | ⊢ ( 𝜑  →  ( 𝑉  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑉 ‘ 0 )  =  ( 𝐴  +  𝑋 )  ∧  ( 𝑉 ‘ 𝑀 )  =  ( 𝐵  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 )  <  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 12 | 11 | simpld | ⊢ ( 𝜑  →  𝑉  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 13 |  | elmapi | ⊢ ( 𝑉  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 15 | 14 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑉 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 16 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 17 | 15 16 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 )  ∈  ℝ ) | 
						
							| 18 | 17 8 | fmptd | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 19 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 21 |  | ovex | ⊢ ( 0 ... 𝑀 )  ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ∈  V ) | 
						
							| 23 | 20 22 | elmapd | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ↔  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) | 
						
							| 24 | 18 23 | mpbird | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 25 | 8 | a1i | ⊢ ( 𝜑  →  𝑄  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 ) ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑉 ‘ 𝑖 )  =  ( 𝑉 ‘ 0 ) ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( 𝑖  =  0  →  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 )  =  ( ( 𝑉 ‘ 0 )  −  𝑋 ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 )  =  ( ( 𝑉 ‘ 0 )  −  𝑋 ) ) | 
						
							| 29 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 30 | 6 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 31 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →  0  ≤  0 ) | 
						
							| 33 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 34 | 6 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 35 | 6 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑀 ) | 
						
							| 36 | 33 34 35 | ltled | ⊢ ( 𝜑  →  0  ≤  𝑀 ) | 
						
							| 37 | 29 30 29 32 36 | elfzd | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 38 | 14 37 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑉 ‘ 0 )  ∈  ℝ ) | 
						
							| 39 | 38 3 | resubcld | ⊢ ( 𝜑  →  ( ( 𝑉 ‘ 0 )  −  𝑋 )  ∈  ℝ ) | 
						
							| 40 | 25 28 37 39 | fvmptd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  ( ( 𝑉 ‘ 0 )  −  𝑋 ) ) | 
						
							| 41 | 11 | simprd | ⊢ ( 𝜑  →  ( ( ( 𝑉 ‘ 0 )  =  ( 𝐴  +  𝑋 )  ∧  ( 𝑉 ‘ 𝑀 )  =  ( 𝐵  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 )  <  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 42 | 41 | simpld | ⊢ ( 𝜑  →  ( ( 𝑉 ‘ 0 )  =  ( 𝐴  +  𝑋 )  ∧  ( 𝑉 ‘ 𝑀 )  =  ( 𝐵  +  𝑋 ) ) ) | 
						
							| 43 | 42 | simpld | ⊢ ( 𝜑  →  ( 𝑉 ‘ 0 )  =  ( 𝐴  +  𝑋 ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑉 ‘ 0 )  −  𝑋 )  =  ( ( 𝐴  +  𝑋 )  −  𝑋 ) ) | 
						
							| 45 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 46 | 3 | recnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 47 | 45 46 | pncand | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝑋 )  −  𝑋 )  =  𝐴 ) | 
						
							| 48 | 40 44 47 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  𝐴 ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑖  =  𝑀  →  ( 𝑉 ‘ 𝑖 )  =  ( 𝑉 ‘ 𝑀 ) ) | 
						
							| 50 | 49 | oveq1d | ⊢ ( 𝑖  =  𝑀  →  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 )  =  ( ( 𝑉 ‘ 𝑀 )  −  𝑋 ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  =  𝑀 )  →  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 )  =  ( ( 𝑉 ‘ 𝑀 )  −  𝑋 ) ) | 
						
							| 52 | 34 | leidd | ⊢ ( 𝜑  →  𝑀  ≤  𝑀 ) | 
						
							| 53 | 29 30 30 36 52 | elfzd | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 54 | 14 53 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑉 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 55 | 54 3 | resubcld | ⊢ ( 𝜑  →  ( ( 𝑉 ‘ 𝑀 )  −  𝑋 )  ∈  ℝ ) | 
						
							| 56 | 25 51 53 55 | fvmptd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  ( ( 𝑉 ‘ 𝑀 )  −  𝑋 ) ) | 
						
							| 57 | 42 | simprd | ⊢ ( 𝜑  →  ( 𝑉 ‘ 𝑀 )  =  ( 𝐵  +  𝑋 ) ) | 
						
							| 58 | 57 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑉 ‘ 𝑀 )  −  𝑋 )  =  ( ( 𝐵  +  𝑋 )  −  𝑋 ) ) | 
						
							| 59 | 2 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 60 | 59 46 | pncand | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝑋 )  −  𝑋 )  =  𝐵 ) | 
						
							| 61 | 56 58 60 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) | 
						
							| 62 | 48 61 | jca | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) ) | 
						
							| 63 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 64 | 63 15 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑉 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 65 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 66 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 68 | 65 67 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑉 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 69 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 70 | 41 | simprd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 )  <  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 71 | 70 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑉 ‘ 𝑖 )  <  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 72 | 64 68 69 71 | ltsub1dd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 )  <  ( ( 𝑉 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) | 
						
							| 73 | 63 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 74 | 63 17 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 )  ∈  ℝ ) | 
						
							| 75 | 8 | fvmpt2 | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 )  ∈  ℝ )  →  ( 𝑄 ‘ 𝑖 )  =  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 76 | 73 74 75 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 77 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑉 ‘ 𝑖 )  =  ( 𝑉 ‘ 𝑗 ) ) | 
						
							| 78 | 77 | oveq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 )  =  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) | 
						
							| 79 | 78 | cbvmptv | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 ) )  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) | 
						
							| 80 | 8 79 | eqtri | ⊢ 𝑄  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) | 
						
							| 81 | 80 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) ) | 
						
							| 82 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( 𝑉 ‘ 𝑗 )  =  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 83 | 82 | oveq1d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 )  =  ( ( 𝑉 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑗  =  ( 𝑖  +  1 ) )  →  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 )  =  ( ( 𝑉 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) | 
						
							| 85 | 68 69 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑉 ‘ ( 𝑖  +  1 ) )  −  𝑋 )  ∈  ℝ ) | 
						
							| 86 | 81 84 67 85 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  =  ( ( 𝑉 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) | 
						
							| 87 | 72 76 86 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 88 | 87 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 89 | 24 62 88 | jca32 | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 90 | 5 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑂 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 91 | 6 90 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑂 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 92 | 89 91 | mpbird | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑂 ‘ 𝑀 ) ) |