Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem15.1 |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
2 |
|
fourierdlem15.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
3 |
|
fourierdlem15.3 |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
4 |
1
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
5 |
2 4
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
6 |
3 5
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
7 |
6
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
8 |
|
reex |
⊢ ℝ ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
10 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ V ) |
12 |
9 11
|
elmapd |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) |
13 |
7 12
|
mpbid |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
14 |
|
ffn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ → 𝑄 Fn ( 0 ... 𝑀 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑄 Fn ( 0 ... 𝑀 ) ) |
16 |
6
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
17 |
16
|
simpld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
18 |
17
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
19 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
20 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
21 |
19 20
|
eleqtrdi |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
22 |
2 21
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
23 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
25 |
13 24
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
26 |
18 25
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝐴 ∈ ℝ ) |
28 |
17
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
29 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
30 |
22 29
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
31 |
13 30
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
32 |
28 31
|
eqeltrrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℝ ) |
34 |
13
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
35 |
18
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝑄 ‘ 0 ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝐴 = ( 𝑄 ‘ 0 ) ) |
37 |
|
elfzuz |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
39 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
40 |
|
0zd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 0 ∈ ℤ ) |
41 |
|
elfzel2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℤ ) |
42 |
41
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑀 ∈ ℤ ) |
43 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑖 ) → 𝑗 ∈ ℤ ) |
44 |
43
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ∈ ℤ ) |
45 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑖 ) → 0 ≤ 𝑗 ) |
46 |
45
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 0 ≤ 𝑗 ) |
47 |
43
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... 𝑖 ) → 𝑗 ∈ ℝ ) |
48 |
47
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ∈ ℝ ) |
49 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℤ ) |
50 |
49
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℝ ) |
51 |
50
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑖 ∈ ℝ ) |
52 |
41
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℝ ) |
53 |
52
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑀 ∈ ℝ ) |
54 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑖 ) → 𝑗 ≤ 𝑖 ) |
55 |
54
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ≤ 𝑖 ) |
56 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ≤ 𝑀 ) |
57 |
56
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑖 ≤ 𝑀 ) |
58 |
48 51 53 55 57
|
letrd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ≤ 𝑀 ) |
59 |
40 42 44 46 58
|
elfzd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
60 |
59
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
61 |
39 60
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑖 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
62 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝜑 ) |
63 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 0 ≤ 𝑗 ) |
64 |
63
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 0 ≤ 𝑗 ) |
65 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 𝑗 ∈ ℤ ) |
66 |
65
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 𝑗 ∈ ℝ ) |
67 |
66
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
68 |
50
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
69 |
52
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
70 |
|
peano2rem |
⊢ ( 𝑖 ∈ ℝ → ( 𝑖 − 1 ) ∈ ℝ ) |
71 |
68 70
|
syl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝑖 − 1 ) ∈ ℝ ) |
72 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 𝑗 ≤ ( 𝑖 − 1 ) ) |
73 |
72
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 ≤ ( 𝑖 − 1 ) ) |
74 |
68
|
ltm1d |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝑖 − 1 ) < 𝑖 ) |
75 |
67 71 68 73 74
|
lelttrd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 < 𝑖 ) |
76 |
56
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑖 ≤ 𝑀 ) |
77 |
67 68 69 75 76
|
ltletrd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 < 𝑀 ) |
78 |
65
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 ∈ ℤ ) |
79 |
|
0zd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 0 ∈ ℤ ) |
80 |
41
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
81 |
|
elfzo |
⊢ ( ( 𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 < 𝑀 ) ) ) |
82 |
78 79 80 81
|
syl3anc |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 < 𝑀 ) ) ) |
83 |
64 77 82
|
mpbir2and |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
84 |
83
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
85 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
86 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
87 |
86
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
88 |
85 87
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
89 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
90 |
89
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
91 |
85 90
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
92 |
|
eleq1w |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) |
93 |
92
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
94 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
95 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 + 1 ) = ( 𝑗 + 1 ) ) |
96 |
95
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
97 |
94 96
|
breq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
98 |
93 97
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ) |
99 |
16
|
simprd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
100 |
99
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
101 |
98 100
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
102 |
88 91 101
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ≤ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
103 |
62 84 102
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝑄 ‘ 𝑗 ) ≤ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
104 |
38 61 103
|
monoord |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
105 |
36 104
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝐴 ≤ ( 𝑄 ‘ 𝑖 ) ) |
106 |
|
elfzuz3 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
108 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
109 |
|
fz0fzelfz0 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
110 |
109
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
111 |
108 110
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
112 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
113 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ∈ ℤ ) |
114 |
41
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
115 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) → 𝑗 ∈ ℤ ) |
116 |
115
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ℤ ) |
117 |
|
0red |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ∈ ℝ ) |
118 |
50
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
119 |
115
|
zred |
⊢ ( 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) → 𝑗 ∈ ℝ ) |
120 |
119
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
121 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 0 ≤ 𝑖 ) |
122 |
121
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ≤ 𝑖 ) |
123 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) → 𝑖 ≤ 𝑗 ) |
124 |
123
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑖 ≤ 𝑗 ) |
125 |
117 118 120 122 124
|
letrd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ≤ 𝑗 ) |
126 |
125
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ≤ 𝑗 ) |
127 |
119
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
128 |
2
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
130 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 1 ∈ ℝ ) |
131 |
129 130
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑀 − 1 ) ∈ ℝ ) |
132 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) → 𝑗 ≤ ( 𝑀 − 1 ) ) |
133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ≤ ( 𝑀 − 1 ) ) |
134 |
129
|
ltm1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑀 − 1 ) < 𝑀 ) |
135 |
127 131 129 133 134
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 < 𝑀 ) |
136 |
127 129 135
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ≤ 𝑀 ) |
137 |
136
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ≤ 𝑀 ) |
138 |
113 114 116 126 137
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
139 |
112 138
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
140 |
116
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℤ ) |
141 |
119
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
142 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 1 ∈ ℝ ) |
143 |
|
0le1 |
⊢ 0 ≤ 1 |
144 |
143
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ≤ 1 ) |
145 |
141 142 126 144
|
addge0d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 0 ≤ ( 𝑗 + 1 ) ) |
146 |
127 131 130 133
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 + 1 ) ≤ ( ( 𝑀 − 1 ) + 1 ) ) |
147 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
148 |
147
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℂ ) |
149 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 1 ∈ ℂ ) |
150 |
148 149
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
151 |
146 150
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 + 1 ) ≤ 𝑀 ) |
152 |
151
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 + 1 ) ≤ 𝑀 ) |
153 |
113 114 140 145 152
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
154 |
112 153
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
155 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝜑 ) |
156 |
135
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 < 𝑀 ) |
157 |
116 113 114 81
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 < 𝑀 ) ) ) |
158 |
126 156 157
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
159 |
155 158 101
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
160 |
139 154 159
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑄 ‘ 𝑗 ) ≤ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
161 |
107 111 160
|
monoord |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
162 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
163 |
161 162
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ 𝐵 ) |
164 |
27 33 34 105 163
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
165 |
164
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
166 |
|
fnfvrnss |
⊢ ( ( 𝑄 Fn ( 0 ... 𝑀 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ran 𝑄 ⊆ ( 𝐴 [,] 𝐵 ) ) |
167 |
15 165 166
|
syl2anc |
⊢ ( 𝜑 → ran 𝑄 ⊆ ( 𝐴 [,] 𝐵 ) ) |
168 |
|
df-f |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑄 Fn ( 0 ... 𝑀 ) ∧ ran 𝑄 ⊆ ( 𝐴 [,] 𝐵 ) ) ) |
169 |
15 167 168
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |