| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem15.1 | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 2 |  | fourierdlem15.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 3 |  | fourierdlem15.3 | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 4 | 1 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 6 | 3 5 | mpbid | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 8 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 10 |  | ovex | ⊢ ( 0 ... 𝑀 )  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ∈  V ) | 
						
							| 12 | 9 11 | elmapd | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ↔  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) | 
						
							| 13 | 7 12 | mpbid | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 14 |  | ffn | ⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ  →  𝑄  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  𝑄  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 16 | 6 | simprd | ⊢ ( 𝜑  →  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 17 | 16 | simpld | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  𝐴 ) | 
						
							| 19 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 20 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 21 | 19 20 | eleqtrdi | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 22 | 2 21 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 23 |  | eluzfz1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 25 | 13 24 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  ∈  ℝ ) | 
						
							| 26 | 18 25 | eqeltrrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 28 | 17 | simprd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) | 
						
							| 29 |  | eluzfz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 30 | 22 29 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 31 | 13 30 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 32 | 28 31 | eqeltrrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 34 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 35 | 18 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  ( 𝑄 ‘ 0 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝐴  =  ( 𝑄 ‘ 0 ) ) | 
						
							| 37 |  | elfzuz | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑖  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝑖  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 39 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 40 |  | 0zd | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  0  ∈  ℤ ) | 
						
							| 41 |  | elfzel2 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 43 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... 𝑖 )  →  𝑗  ∈  ℤ ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 45 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑖 )  →  0  ≤  𝑗 ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  0  ≤  𝑗 ) | 
						
							| 47 | 43 | zred | ⊢ ( 𝑗  ∈  ( 0 ... 𝑖 )  →  𝑗  ∈  ℝ ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 49 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑖  ∈  ℤ ) | 
						
							| 50 | 49 | zred | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑖  ∈  ℝ ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 52 | 41 | zred | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 54 |  | elfzle2 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑖 )  →  𝑗  ≤  𝑖 ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  𝑗  ≤  𝑖 ) | 
						
							| 56 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑖  ≤  𝑀 ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  𝑖  ≤  𝑀 ) | 
						
							| 58 | 48 51 53 55 57 | letrd | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  𝑗  ≤  𝑀 ) | 
						
							| 59 | 40 42 44 46 58 | elfzd | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 60 | 59 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 61 | 39 60 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑖 ) )  →  ( 𝑄 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 62 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝜑 ) | 
						
							| 63 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) )  →  0  ≤  𝑗 ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  0  ≤  𝑗 ) | 
						
							| 65 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 66 | 65 | zred | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 68 | 50 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑖  ∈  ℝ ) | 
						
							| 69 | 52 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 70 |  | peano2rem | ⊢ ( 𝑖  ∈  ℝ  →  ( 𝑖  −  1 )  ∈  ℝ ) | 
						
							| 71 | 68 70 | syl | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  ( 𝑖  −  1 )  ∈  ℝ ) | 
						
							| 72 |  | elfzle2 | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) )  →  𝑗  ≤  ( 𝑖  −  1 ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑗  ≤  ( 𝑖  −  1 ) ) | 
						
							| 74 | 68 | ltm1d | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  ( 𝑖  −  1 )  <  𝑖 ) | 
						
							| 75 | 67 71 68 73 74 | lelttrd | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑗  <  𝑖 ) | 
						
							| 76 | 56 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑖  ≤  𝑀 ) | 
						
							| 77 | 67 68 69 75 76 | ltletrd | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑗  <  𝑀 ) | 
						
							| 78 | 65 | adantl | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 79 |  | 0zd | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  0  ∈  ℤ ) | 
						
							| 80 | 41 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 81 |  | elfzo | ⊢ ( ( 𝑗  ∈  ℤ  ∧  0  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ↔  ( 0  ≤  𝑗  ∧  𝑗  <  𝑀 ) ) ) | 
						
							| 82 | 78 79 80 81 | syl3anc | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ↔  ( 0  ≤  𝑗  ∧  𝑗  <  𝑀 ) ) ) | 
						
							| 83 | 64 77 82 | mpbir2and | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑗  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 84 | 83 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  𝑗  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 85 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 86 |  | elfzofz | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 87 | 86 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 88 | 85 87 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 89 |  | fzofzp1 | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 91 | 85 90 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 92 |  | eleq1w | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↔  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 93 | 92 | anbi2d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ↔  ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) ) | 
						
							| 94 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 95 |  | oveq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  +  1 )  =  ( 𝑗  +  1 ) ) | 
						
							| 96 | 95 | fveq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 97 | 94 96 | breq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑄 ‘ 𝑗 )  <  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 98 | 93 97 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑗 )  <  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 99 | 16 | simprd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 100 | 99 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 101 | 98 100 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑗 )  <  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 102 | 88 91 101 | ltled | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑗 )  ≤  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 103 | 62 84 102 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... ( 𝑖  −  1 ) ) )  →  ( 𝑄 ‘ 𝑗 )  ≤  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 104 | 38 61 103 | monoord | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 0 )  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 105 | 36 104 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝐴  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 106 |  | elfzuz3 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑖 ) ) | 
						
							| 107 | 106 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑖 ) ) | 
						
							| 108 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 109 |  | fz0fzelfz0 | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 𝑖 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 110 | 109 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 111 | 108 110 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 112 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 113 |  | 0zd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  0  ∈  ℤ ) | 
						
							| 114 | 41 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 115 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 116 | 115 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 117 |  | 0red | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  0  ∈  ℝ ) | 
						
							| 118 | 50 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑖  ∈  ℝ ) | 
						
							| 119 | 115 | zred | ⊢ ( 𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 120 | 119 | adantl | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 121 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  0  ≤  𝑖 ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  0  ≤  𝑖 ) | 
						
							| 123 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) )  →  𝑖  ≤  𝑗 ) | 
						
							| 124 | 123 | adantl | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑖  ≤  𝑗 ) | 
						
							| 125 | 117 118 120 122 124 | letrd | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  0  ≤  𝑗 ) | 
						
							| 126 | 125 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  0  ≤  𝑗 ) | 
						
							| 127 | 119 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 128 | 2 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 130 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  1  ∈  ℝ ) | 
						
							| 131 | 129 130 | resubcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 132 |  | elfzle2 | ⊢ ( 𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) )  →  𝑗  ≤  ( 𝑀  −  1 ) ) | 
						
							| 133 | 132 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑗  ≤  ( 𝑀  −  1 ) ) | 
						
							| 134 | 129 | ltm1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑀  −  1 )  <  𝑀 ) | 
						
							| 135 | 127 131 129 133 134 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑗  <  𝑀 ) | 
						
							| 136 | 127 129 135 | ltled | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑗  ≤  𝑀 ) | 
						
							| 137 | 136 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑗  ≤  𝑀 ) | 
						
							| 138 | 113 114 116 126 137 | elfzd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 139 | 112 138 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑄 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 140 | 116 | peano2zd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑗  +  1 )  ∈  ℤ ) | 
						
							| 141 | 119 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 142 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  1  ∈  ℝ ) | 
						
							| 143 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 144 | 143 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  0  ≤  1 ) | 
						
							| 145 | 141 142 126 144 | addge0d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  0  ≤  ( 𝑗  +  1 ) ) | 
						
							| 146 | 127 131 130 133 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑗  +  1 )  ≤  ( ( 𝑀  −  1 )  +  1 ) ) | 
						
							| 147 | 2 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 148 | 147 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑀  ∈  ℂ ) | 
						
							| 149 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  1  ∈  ℂ ) | 
						
							| 150 | 148 149 | npcand | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 151 | 146 150 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑗  +  1 )  ≤  𝑀 ) | 
						
							| 152 | 151 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑗  +  1 )  ≤  𝑀 ) | 
						
							| 153 | 113 114 140 145 152 | elfzd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 154 | 112 153 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑄 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 155 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝜑 ) | 
						
							| 156 | 135 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑗  <  𝑀 ) | 
						
							| 157 | 116 113 114 81 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ↔  ( 0  ≤  𝑗  ∧  𝑗  <  𝑀 ) ) ) | 
						
							| 158 | 126 156 157 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  𝑗  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 159 | 155 158 101 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑄 ‘ 𝑗 )  <  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 160 | 139 154 159 | ltled | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 𝑖 ... ( 𝑀  −  1 ) ) )  →  ( 𝑄 ‘ 𝑗 )  ≤  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 161 | 107 111 160 | monoord | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 162 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) | 
						
							| 163 | 161 162 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ≤  𝐵 ) | 
						
							| 164 | 27 33 34 105 163 | eliccd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 165 | 164 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 166 |  | fnfvrnss | ⊢ ( ( 𝑄  Fn  ( 0 ... 𝑀 )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ran  𝑄  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 167 | 15 165 166 | syl2anc | ⊢ ( 𝜑  →  ran  𝑄  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 168 |  | df-f | ⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 )  ↔  ( 𝑄  Fn  ( 0 ... 𝑀 )  ∧  ran  𝑄  ⊆  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 169 | 15 167 168 | sylanbrc | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |