Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem2.1 |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
2 |
|
oveq2 |
⊢ ( 𝑚 = 𝑀 → ( 0 ... 𝑚 ) = ( 0 ... 𝑀 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑚 = 𝑀 → ( ℝ ↑m ( 0 ... 𝑚 ) ) = ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
4 |
|
fveqeq2 |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑝 ‘ 𝑚 ) = 𝐵 ↔ ( 𝑝 ‘ 𝑀 ) = 𝐵 ) ) |
5 |
4
|
anbi2d |
⊢ ( 𝑚 = 𝑀 → ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ↔ ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑀 ) = 𝐵 ) ) ) |
6 |
|
oveq2 |
⊢ ( 𝑚 = 𝑀 → ( 0 ..^ 𝑚 ) = ( 0 ..^ 𝑀 ) ) |
7 |
6
|
raleqdv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) |
8 |
5 7
|
anbi12d |
⊢ ( 𝑚 = 𝑀 → ( ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
9 |
3 8
|
rabeqbidv |
⊢ ( 𝑚 = 𝑀 → { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } = { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
10 |
|
ovex |
⊢ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∈ V |
11 |
10
|
rabex |
⊢ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ∈ V |
12 |
9 1 11
|
fvmpt |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ‘ 𝑀 ) = { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
13 |
12
|
eleq2d |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ 𝑄 ∈ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ) |
14 |
|
fveq1 |
⊢ ( 𝑝 = 𝑄 → ( 𝑝 ‘ 0 ) = ( 𝑄 ‘ 0 ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑝 = 𝑄 → ( ( 𝑝 ‘ 0 ) = 𝐴 ↔ ( 𝑄 ‘ 0 ) = 𝐴 ) ) |
16 |
|
fveq1 |
⊢ ( 𝑝 = 𝑄 → ( 𝑝 ‘ 𝑀 ) = ( 𝑄 ‘ 𝑀 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑝 = 𝑄 → ( ( 𝑝 ‘ 𝑀 ) = 𝐵 ↔ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
18 |
15 17
|
anbi12d |
⊢ ( 𝑝 = 𝑄 → ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑀 ) = 𝐵 ) ↔ ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) ) |
19 |
|
fveq1 |
⊢ ( 𝑝 = 𝑄 → ( 𝑝 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑖 ) ) |
20 |
|
fveq1 |
⊢ ( 𝑝 = 𝑄 → ( 𝑝 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
21 |
19 20
|
breq12d |
⊢ ( 𝑝 = 𝑄 → ( ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
22 |
21
|
ralbidv |
⊢ ( 𝑝 = 𝑄 → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
23 |
18 22
|
anbi12d |
⊢ ( 𝑝 = 𝑄 → ( ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
24 |
23
|
elrab |
⊢ ( 𝑄 ∈ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
25 |
13 24
|
bitrdi |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |