| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem22.f | 
							⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem22.c | 
							⊢ 𝐶  =  ( - π (,) π )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem22.fibl | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  𝐶 )  ∈  𝐿1 )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem22.a | 
							⊢ 𝐴  =  ( 𝑛  ∈  ℕ0  ↦  ( ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem22.b | 
							⊢ 𝐵  =  ( 𝑛  ∈  ℕ  ↦  ( ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π ) )  | 
						
						
							| 6 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝐹 : ℝ ⟶ ℝ )  | 
						
						
							| 7 | 
							
								
							 | 
							ioossre | 
							⊢ ( - π (,) π )  ⊆  ℝ  | 
						
						
							| 8 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  ∈  𝐶  →  𝑥  ∈  𝐶 )  | 
						
						
							| 9 | 
							
								8 2
							 | 
							eleqtrdi | 
							⊢ ( 𝑥  ∈  𝐶  →  𝑥  ∈  ( - π (,) π ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							sselid | 
							⊢ ( 𝑥  ∈  𝐶  →  𝑥  ∈  ℝ )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  𝑥  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ )  | 
						
						
							| 14 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℝ )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑥  ∈  𝐶 )  →  𝑛  ∈  ℝ )  | 
						
						
							| 16 | 
							
								10
							 | 
							adantl | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑥  ∈  𝐶 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							remulcld | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑥  ∈  𝐶 )  →  ( 𝑛  ·  𝑥 )  ∈  ℝ )  | 
						
						
							| 18 | 
							
								17
							 | 
							recoscld | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑥  ∈  𝐶 )  →  ( cos ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantll | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  𝑥  ∈  𝐶 )  →  ( cos ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ )  | 
						
						
							| 20 | 
							
								13 19
							 | 
							remulcld | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  𝑥  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  ℝ )  | 
						
						
							| 21 | 
							
								
							 | 
							ioombl | 
							⊢ ( - π (,) π )  ∈  dom  vol  | 
						
						
							| 22 | 
							
								2 21
							 | 
							eqeltri | 
							⊢ 𝐶  ∈  dom  vol  | 
						
						
							| 23 | 
							
								22
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  𝐶  ∈  dom  vol )  | 
						
						
							| 24 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  =  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 26 | 
							
								23 19 13 24 25
							 | 
							offval2 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐶  ↦  ( ( cos ‘ ( 𝑛  ·  𝑥 ) )  ·  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 27 | 
							
								19
							 | 
							recnd | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  𝑥  ∈  𝐶 )  →  ( cos ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℂ )  | 
						
						
							| 28 | 
							
								13
							 | 
							recnd | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  𝑥  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							mulcomd | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  𝑥  ∈  𝐶 )  →  ( ( cos ‘ ( 𝑛  ·  𝑥 ) )  ·  ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( ( cos ‘ ( 𝑛  ·  𝑥 ) )  ·  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐶  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ) )  | 
						
						
							| 31 | 
							
								26 30
							 | 
							eqtr2d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  =  ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							coscn | 
							⊢ cos  ∈  ( ℂ –cn→ ℂ )  | 
						
						
							| 33 | 
							
								32
							 | 
							a1i | 
							⊢ ( 𝑛  ∈  ℕ0  →  cos  ∈  ( ℂ –cn→ ℂ ) )  | 
						
						
							| 34 | 
							
								2 7
							 | 
							eqsstri | 
							⊢ 𝐶  ⊆  ℝ  | 
						
						
							| 35 | 
							
								
							 | 
							ax-resscn | 
							⊢ ℝ  ⊆  ℂ  | 
						
						
							| 36 | 
							
								34 35
							 | 
							sstri | 
							⊢ 𝐶  ⊆  ℂ  | 
						
						
							| 37 | 
							
								36
							 | 
							a1i | 
							⊢ ( 𝑛  ∈  ℕ0  →  𝐶  ⊆  ℂ )  | 
						
						
							| 38 | 
							
								14
							 | 
							recnd | 
							⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℂ )  | 
						
						
							| 39 | 
							
								
							 | 
							ssid | 
							⊢ ℂ  ⊆  ℂ  | 
						
						
							| 40 | 
							
								39
							 | 
							a1i | 
							⊢ ( 𝑛  ∈  ℕ0  →  ℂ  ⊆  ℂ )  | 
						
						
							| 41 | 
							
								37 38 40
							 | 
							constcncfg | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑥  ∈  𝐶  ↦  𝑛 )  ∈  ( 𝐶 –cn→ ℂ ) )  | 
						
						
							| 42 | 
							
								
							 | 
							cncfmptid | 
							⊢ ( ( 𝐶  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝑥  ∈  𝐶  ↦  𝑥 )  ∈  ( 𝐶 –cn→ ℂ ) )  | 
						
						
							| 43 | 
							
								36 39 42
							 | 
							mp2an | 
							⊢ ( 𝑥  ∈  𝐶  ↦  𝑥 )  ∈  ( 𝐶 –cn→ ℂ )  | 
						
						
							| 44 | 
							
								43
							 | 
							a1i | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑥  ∈  𝐶  ↦  𝑥 )  ∈  ( 𝐶 –cn→ ℂ ) )  | 
						
						
							| 45 | 
							
								41 44
							 | 
							mulcncf | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑥  ∈  𝐶  ↦  ( 𝑛  ·  𝑥 ) )  ∈  ( 𝐶 –cn→ ℂ ) )  | 
						
						
							| 46 | 
							
								33 45
							 | 
							cncfmpt1f | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  ( 𝐶 –cn→ ℂ ) )  | 
						
						
							| 47 | 
							
								
							 | 
							cnmbf | 
							⊢ ( ( 𝐶  ∈  dom  vol  ∧  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  ( 𝐶 –cn→ ℂ ) )  →  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  MblFn )  | 
						
						
							| 48 | 
							
								22 46 47
							 | 
							sylancr | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  MblFn )  | 
						
						
							| 49 | 
							
								48
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  MblFn )  | 
						
						
							| 50 | 
							
								1
							 | 
							feqmptd | 
							⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							reseq1d | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  𝐶 )  =  ( ( 𝑥  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  𝐶 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							resmpt | 
							⊢ ( 𝐶  ⊆  ℝ  →  ( ( 𝑥  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  𝐶 )  =  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 53 | 
							
								34 52
							 | 
							mp1i | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  𝐶 )  =  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 54 | 
							
								51 53
							 | 
							eqtr2d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹  ↾  𝐶 ) )  | 
						
						
							| 55 | 
							
								54 3
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  | 
						
						
							| 57 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 58 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑛  ∈  ℕ0  | 
						
						
							| 60 | 
							
								
							 | 
							nfmpt1 | 
							⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							nfdm | 
							⊢ Ⅎ 𝑥 dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  | 
						
						
							| 63 | 
							
								59 62
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  | 
						
						
							| 64 | 
							
								18
							 | 
							ex | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑥  ∈  𝐶  →  ( cos ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							adantr | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  ( 𝑥  ∈  𝐶  →  ( cos ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ ) )  | 
						
						
							| 66 | 
							
								63 65
							 | 
							ralrimi | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  ∀ 𝑥  ∈  𝐶 ( cos ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ )  | 
						
						
							| 67 | 
							
								
							 | 
							dmmptg | 
							⊢ ( ∀ 𝑥  ∈  𝐶 ( cos ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ  →  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  =  𝐶 )  | 
						
						
							| 68 | 
							
								66 67
							 | 
							syl | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  =  𝐶 )  | 
						
						
							| 69 | 
							
								58 68
							 | 
							eleqtrd | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  𝑦  ∈  𝐶 )  | 
						
						
							| 70 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  =  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑛  ·  𝑥 )  =  ( 𝑛  ·  𝑦 ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝑦  →  ( cos ‘ ( 𝑛  ·  𝑥 ) )  =  ( cos ‘ ( 𝑛  ·  𝑦 ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantl | 
							⊢ ( ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  =  𝑦 )  →  ( cos ‘ ( 𝑛  ·  𝑥 ) )  =  ( cos ‘ ( 𝑛  ·  𝑦 ) ) )  | 
						
						
							| 74 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  𝑦  ∈  𝐶 )  | 
						
						
							| 75 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  𝑛  ∈  ℝ )  | 
						
						
							| 76 | 
							
								34 74
							 | 
							sselid | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  𝑦  ∈  ℝ )  | 
						
						
							| 77 | 
							
								75 76
							 | 
							remulcld | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( 𝑛  ·  𝑦 )  ∈  ℝ )  | 
						
						
							| 78 | 
							
								77
							 | 
							recoscld | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( cos ‘ ( 𝑛  ·  𝑦 ) )  ∈  ℝ )  | 
						
						
							| 79 | 
							
								70 73 74 78
							 | 
							fvmptd | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 )  =  ( cos ‘ ( 𝑛  ·  𝑦 ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							fveq2d | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  =  ( abs ‘ ( cos ‘ ( 𝑛  ·  𝑦 ) ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							abscosbd | 
							⊢ ( ( 𝑛  ·  𝑦 )  ∈  ℝ  →  ( abs ‘ ( cos ‘ ( 𝑛  ·  𝑦 ) ) )  ≤  1 )  | 
						
						
							| 82 | 
							
								77 81
							 | 
							syl | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( abs ‘ ( cos ‘ ( 𝑛  ·  𝑦 ) ) )  ≤  1 )  | 
						
						
							| 83 | 
							
								80 82
							 | 
							eqbrtrd | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 )  | 
						
						
							| 84 | 
							
								69 83
							 | 
							syldan | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 )  | 
						
						
							| 85 | 
							
								84
							 | 
							ralrimiva | 
							⊢ ( 𝑛  ∈  ℕ0  →  ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 )  | 
						
						
							| 86 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑏  =  1  →  ( ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏  ↔  ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							ralbidv | 
							⊢ ( 𝑏  =  1  →  ( ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏  ↔  ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							rspcev | 
							⊢ ( ( 1  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 )  →  ∃ 𝑏  ∈  ℝ ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏 )  | 
						
						
							| 89 | 
							
								57 85 88
							 | 
							sylancr | 
							⊢ ( 𝑛  ∈  ℕ0  →  ∃ 𝑏  ∈  ℝ ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏 )  | 
						
						
							| 90 | 
							
								89
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ∃ 𝑏  ∈  ℝ ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏 )  | 
						
						
							| 91 | 
							
								
							 | 
							bddmulibl | 
							⊢ ( ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1  ∧  ∃ 𝑏  ∈  ℝ ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏 )  →  ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) ) )  ∈  𝐿1 )  | 
						
						
							| 92 | 
							
								49 56 90 91
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑥  ∈  𝐶  ↦  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) ) )  ∈  𝐿1 )  | 
						
						
							| 93 | 
							
								31 92
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) ) )  ∈  𝐿1 )  | 
						
						
							| 94 | 
							
								20 93
							 | 
							itgrecl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  ∈  ℝ )  | 
						
						
							| 95 | 
							
								
							 | 
							pire | 
							⊢ π  ∈  ℝ  | 
						
						
							| 96 | 
							
								95
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  π  ∈  ℝ )  | 
						
						
							| 97 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 98 | 
							
								
							 | 
							pipos | 
							⊢ 0  <  π  | 
						
						
							| 99 | 
							
								97 98
							 | 
							gtneii | 
							⊢ π  ≠  0  | 
						
						
							| 100 | 
							
								99
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  π  ≠  0 )  | 
						
						
							| 101 | 
							
								94 96 100
							 | 
							redivcld | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π )  ∈  ℝ )  | 
						
						
							| 102 | 
							
								101 4
							 | 
							fmptd | 
							⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℝ )  | 
						
						
							| 103 | 
							
								102
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 104 | 
							
								103
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  →  ( 𝐴 ‘ 𝑛 )  ∈  ℝ ) )  | 
						
						
							| 105 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 )  | 
						
						
							| 106 | 
							
								17
							 | 
							resincld | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑥  ∈  𝐶 )  →  ( sin ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ )  | 
						
						
							| 107 | 
							
								106
							 | 
							adantll | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  𝑥  ∈  𝐶 )  →  ( sin ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ )  | 
						
						
							| 108 | 
							
								13 107
							 | 
							remulcld | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  𝑥  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  ℝ )  | 
						
						
							| 109 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  =  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  | 
						
						
							| 110 | 
							
								23 107 13 109 25
							 | 
							offval2 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐶  ↦  ( ( sin ‘ ( 𝑛  ·  𝑥 ) )  ·  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 111 | 
							
								107
							 | 
							recnd | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  𝑥  ∈  𝐶 )  →  ( sin ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℂ )  | 
						
						
							| 112 | 
							
								111 28
							 | 
							mulcomd | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  𝑥  ∈  𝐶 )  →  ( ( sin ‘ ( 𝑛  ·  𝑥 ) )  ·  ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( ( sin ‘ ( 𝑛  ·  𝑥 ) )  ·  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐶  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ) )  | 
						
						
							| 114 | 
							
								110 113
							 | 
							eqtr2d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  =  ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 115 | 
							
								
							 | 
							sincn | 
							⊢ sin  ∈  ( ℂ –cn→ ℂ )  | 
						
						
							| 116 | 
							
								115
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  sin  ∈  ( ℂ –cn→ ℂ ) )  | 
						
						
							| 117 | 
							
								45
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( 𝑛  ·  𝑥 ) )  ∈  ( 𝐶 –cn→ ℂ ) )  | 
						
						
							| 118 | 
							
								116 117
							 | 
							cncfmpt1f | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  ( 𝐶 –cn→ ℂ ) )  | 
						
						
							| 119 | 
							
								
							 | 
							cnmbf | 
							⊢ ( ( 𝐶  ∈  dom  vol  ∧  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  ( 𝐶 –cn→ ℂ ) )  →  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  MblFn )  | 
						
						
							| 120 | 
							
								22 118 119
							 | 
							sylancr | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  MblFn )  | 
						
						
							| 121 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  | 
						
						
							| 122 | 
							
								
							 | 
							nfmpt1 | 
							⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  | 
						
						
							| 123 | 
							
								122
							 | 
							nfdm | 
							⊢ Ⅎ 𝑥 dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  | 
						
						
							| 125 | 
							
								59 124
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  | 
						
						
							| 126 | 
							
								106
							 | 
							ex | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑥  ∈  𝐶  →  ( sin ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ ) )  | 
						
						
							| 127 | 
							
								126
							 | 
							adantr | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  ( 𝑥  ∈  𝐶  →  ( sin ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ ) )  | 
						
						
							| 128 | 
							
								125 127
							 | 
							ralrimi | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  ∀ 𝑥  ∈  𝐶 ( sin ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ )  | 
						
						
							| 129 | 
							
								
							 | 
							dmmptg | 
							⊢ ( ∀ 𝑥  ∈  𝐶 ( sin ‘ ( 𝑛  ·  𝑥 ) )  ∈  ℝ  →  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  =  𝐶 )  | 
						
						
							| 130 | 
							
								128 129
							 | 
							syl | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  =  𝐶 )  | 
						
						
							| 131 | 
							
								121 130
							 | 
							eleqtrd | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  𝑦  ∈  𝐶 )  | 
						
						
							| 132 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  =  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  | 
						
						
							| 133 | 
							
								71
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝑦  →  ( sin ‘ ( 𝑛  ·  𝑥 ) )  =  ( sin ‘ ( 𝑛  ·  𝑦 ) ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							adantl | 
							⊢ ( ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  =  𝑦 )  →  ( sin ‘ ( 𝑛  ·  𝑥 ) )  =  ( sin ‘ ( 𝑛  ·  𝑦 ) ) )  | 
						
						
							| 135 | 
							
								77
							 | 
							resincld | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( sin ‘ ( 𝑛  ·  𝑦 ) )  ∈  ℝ )  | 
						
						
							| 136 | 
							
								132 134 74 135
							 | 
							fvmptd | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 )  =  ( sin ‘ ( 𝑛  ·  𝑦 ) ) )  | 
						
						
							| 137 | 
							
								136
							 | 
							fveq2d | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  =  ( abs ‘ ( sin ‘ ( 𝑛  ·  𝑦 ) ) ) )  | 
						
						
							| 138 | 
							
								
							 | 
							abssinbd | 
							⊢ ( ( 𝑛  ·  𝑦 )  ∈  ℝ  →  ( abs ‘ ( sin ‘ ( 𝑛  ·  𝑦 ) ) )  ≤  1 )  | 
						
						
							| 139 | 
							
								77 138
							 | 
							syl | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( abs ‘ ( sin ‘ ( 𝑛  ·  𝑦 ) ) )  ≤  1 )  | 
						
						
							| 140 | 
							
								137 139
							 | 
							eqbrtrd | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  𝐶 )  →  ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 )  | 
						
						
							| 141 | 
							
								131 140
							 | 
							syldan | 
							⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  →  ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 )  | 
						
						
							| 142 | 
							
								141
							 | 
							ralrimiva | 
							⊢ ( 𝑛  ∈  ℕ0  →  ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 )  | 
						
						
							| 143 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑏  =  1  →  ( ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏  ↔  ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 ) )  | 
						
						
							| 144 | 
							
								143
							 | 
							ralbidv | 
							⊢ ( 𝑏  =  1  →  ( ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏  ↔  ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 ) )  | 
						
						
							| 145 | 
							
								144
							 | 
							rspcev | 
							⊢ ( ( 1  ∈  ℝ  ∧  ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  1 )  →  ∃ 𝑏  ∈  ℝ ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏 )  | 
						
						
							| 146 | 
							
								57 142 145
							 | 
							sylancr | 
							⊢ ( 𝑛  ∈  ℕ0  →  ∃ 𝑏  ∈  ℝ ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏 )  | 
						
						
							| 147 | 
							
								146
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ∃ 𝑏  ∈  ℝ ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏 )  | 
						
						
							| 148 | 
							
								
							 | 
							bddmulibl | 
							⊢ ( ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1  ∧  ∃ 𝑏  ∈  ℝ ∀ 𝑦  ∈  dom  ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ( abs ‘ ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) ‘ 𝑦 ) )  ≤  𝑏 )  →  ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) ) )  ∈  𝐿1 )  | 
						
						
							| 149 | 
							
								120 56 147 148
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑥  ∈  𝐶  ↦  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑥 ) ) )  ∈  𝐿1 )  | 
						
						
							| 150 | 
							
								114 149
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐶  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) ) )  ∈  𝐿1 )  | 
						
						
							| 151 | 
							
								108 150
							 | 
							itgrecl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  ∈  ℝ )  | 
						
						
							| 152 | 
							
								105 151
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  ∈  ℝ )  | 
						
						
							| 153 | 
							
								95
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  π  ∈  ℝ )  | 
						
						
							| 154 | 
							
								99
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  π  ≠  0 )  | 
						
						
							| 155 | 
							
								152 153 154
							 | 
							redivcld | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π )  ∈  ℝ )  | 
						
						
							| 156 | 
							
								155 5
							 | 
							fmptd | 
							⊢ ( 𝜑  →  𝐵 : ℕ ⟶ ℝ )  | 
						
						
							| 157 | 
							
								156
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵 ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 158 | 
							
								157
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  →  ( 𝐵 ‘ 𝑛 )  ∈  ℝ ) )  | 
						
						
							| 159 | 
							
								104 158
							 | 
							jca | 
							⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ0  →  ( 𝐴 ‘ 𝑛 )  ∈  ℝ )  ∧  ( 𝑛  ∈  ℕ  →  ( 𝐵 ‘ 𝑛 )  ∈  ℝ ) ) )  |