Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem23.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
2 |
|
fourierdlem23.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |
3 |
|
fourierdlem23.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
4 |
|
fourierdlem23.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
5 |
|
fourierdlem23.xps |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝑋 + 𝑠 ) ∈ 𝐴 ) |
6 |
|
eqid |
⊢ ( 𝑠 ∈ 𝐵 ↦ ( 𝑋 + 𝑠 ) ) = ( 𝑠 ∈ 𝐵 ↦ ( 𝑋 + 𝑠 ) ) |
7 |
6
|
addccncf2 |
⊢ ( ( 𝐵 ⊆ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑠 ∈ 𝐵 ↦ ( 𝑋 + 𝑠 ) ) ∈ ( 𝐵 –cn→ ℂ ) ) |
8 |
3 4 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝐵 ↦ ( 𝑋 + 𝑠 ) ) ∈ ( 𝐵 –cn→ ℂ ) ) |
9 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
10 |
9
|
a1i |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐵 ) |
11 |
6 8 10 1 5
|
cncfmptssg |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝐵 ↦ ( 𝑋 + 𝑠 ) ) ∈ ( 𝐵 –cn→ 𝐴 ) ) |
12 |
11 2
|
cncfcompt |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝐵 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( 𝐵 –cn→ ℂ ) ) |