Metamath Proof Explorer


Theorem fourierdlem23

Description: If F is continuous and X is constant, then ( F( X + s ) ) is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem23.a ( 𝜑𝐴 ⊆ ℂ )
fourierdlem23.f ( 𝜑𝐹 ∈ ( 𝐴cn→ ℂ ) )
fourierdlem23.b ( 𝜑𝐵 ⊆ ℂ )
fourierdlem23.x ( 𝜑𝑋 ∈ ℂ )
fourierdlem23.xps ( ( 𝜑𝑠𝐵 ) → ( 𝑋 + 𝑠 ) ∈ 𝐴 )
Assertion fourierdlem23 ( 𝜑 → ( 𝑠𝐵 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( 𝐵cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 fourierdlem23.a ( 𝜑𝐴 ⊆ ℂ )
2 fourierdlem23.f ( 𝜑𝐹 ∈ ( 𝐴cn→ ℂ ) )
3 fourierdlem23.b ( 𝜑𝐵 ⊆ ℂ )
4 fourierdlem23.x ( 𝜑𝑋 ∈ ℂ )
5 fourierdlem23.xps ( ( 𝜑𝑠𝐵 ) → ( 𝑋 + 𝑠 ) ∈ 𝐴 )
6 eqid ( 𝑠𝐵 ↦ ( 𝑋 + 𝑠 ) ) = ( 𝑠𝐵 ↦ ( 𝑋 + 𝑠 ) )
7 6 addccncf2 ( ( 𝐵 ⊆ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑠𝐵 ↦ ( 𝑋 + 𝑠 ) ) ∈ ( 𝐵cn→ ℂ ) )
8 3 4 7 syl2anc ( 𝜑 → ( 𝑠𝐵 ↦ ( 𝑋 + 𝑠 ) ) ∈ ( 𝐵cn→ ℂ ) )
9 ssid 𝐵𝐵
10 9 a1i ( 𝜑𝐵𝐵 )
11 6 8 10 1 5 cncfmptssg ( 𝜑 → ( 𝑠𝐵 ↦ ( 𝑋 + 𝑠 ) ) ∈ ( 𝐵cn𝐴 ) )
12 11 2 cncfcompt ( 𝜑 → ( 𝑠𝐵 ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( 𝐵cn→ ℂ ) )