| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem23.a | 
							⊢ ( 𝜑  →  𝐴  ⊆  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem23.f | 
							⊢ ( 𝜑  →  𝐹  ∈  ( 𝐴 –cn→ ℂ ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem23.b | 
							⊢ ( 𝜑  →  𝐵  ⊆  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem23.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem23.xps | 
							⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( 𝑋  +  𝑠 )  ∈  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑠  ∈  𝐵  ↦  ( 𝑋  +  𝑠 ) )  =  ( 𝑠  ∈  𝐵  ↦  ( 𝑋  +  𝑠 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							addccncf2 | 
							⊢ ( ( 𝐵  ⊆  ℂ  ∧  𝑋  ∈  ℂ )  →  ( 𝑠  ∈  𝐵  ↦  ( 𝑋  +  𝑠 ) )  ∈  ( 𝐵 –cn→ ℂ ) )  | 
						
						
							| 8 | 
							
								3 4 7
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑠  ∈  𝐵  ↦  ( 𝑋  +  𝑠 ) )  ∈  ( 𝐵 –cn→ ℂ ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ssid | 
							⊢ 𝐵  ⊆  𝐵  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝐵  ⊆  𝐵 )  | 
						
						
							| 11 | 
							
								6 8 10 1 5
							 | 
							cncfmptssg | 
							⊢ ( 𝜑  →  ( 𝑠  ∈  𝐵  ↦  ( 𝑋  +  𝑠 ) )  ∈  ( 𝐵 –cn→ 𝐴 ) )  | 
						
						
							| 12 | 
							
								11 2
							 | 
							cncfcompt | 
							⊢ ( 𝜑  →  ( 𝑠  ∈  𝐵  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) )  ∈  ( 𝐵 –cn→ ℂ ) )  |