| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0zd | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  0  ∈  ℤ )  | 
						
						
							| 2 | 
							
								
							 | 
							pire | 
							⊢ π  ∈  ℝ  | 
						
						
							| 3 | 
							
								2
							 | 
							renegcli | 
							⊢ - π  ∈  ℝ  | 
						
						
							| 4 | 
							
								
							 | 
							iccssre | 
							⊢ ( ( - π  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( - π [,] π )  ⊆  ℝ )  | 
						
						
							| 5 | 
							
								3 2 4
							 | 
							mp2an | 
							⊢ ( - π [,] π )  ⊆  ℝ  | 
						
						
							| 6 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  𝐴  ∈  ( - π [,] π ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sselid | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  𝐴  ∈  ℝ )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 9 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 10 | 
							
								9 2
							 | 
							remulcli | 
							⊢ ( 2  ·  π )  ∈  ℝ  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  ( 2  ·  π )  ∈  ℝ )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  0  <  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							2pos | 
							⊢ 0  <  2  | 
						
						
							| 14 | 
							
								
							 | 
							pipos | 
							⊢ 0  <  π  | 
						
						
							| 15 | 
							
								9 2 13 14
							 | 
							mulgt0ii | 
							⊢ 0  <  ( 2  ·  π )  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  0  <  ( 2  ·  π ) )  | 
						
						
							| 17 | 
							
								8 11 12 16
							 | 
							divgt0d | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  0  <  ( 𝐴  /  ( 2  ·  π ) ) )  | 
						
						
							| 18 | 
							
								11 16
							 | 
							elrpd | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  ( 2  ·  π )  ∈  ℝ+ )  | 
						
						
							| 19 | 
							
								2
							 | 
							a1i | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  π  ∈  ℝ )  | 
						
						
							| 20 | 
							
								10
							 | 
							a1i | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  ( 2  ·  π )  ∈  ℝ )  | 
						
						
							| 21 | 
							
								3
							 | 
							rexri | 
							⊢ - π  ∈  ℝ*  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  - π  ∈  ℝ* )  | 
						
						
							| 23 | 
							
								19
							 | 
							rexrd | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  π  ∈  ℝ* )  | 
						
						
							| 24 | 
							
								
							 | 
							iccleub | 
							⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  𝐴  ∈  ( - π [,] π ) )  →  𝐴  ≤  π )  | 
						
						
							| 25 | 
							
								22 23 6 24
							 | 
							syl3anc | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  𝐴  ≤  π )  | 
						
						
							| 26 | 
							
								
							 | 
							pirp | 
							⊢ π  ∈  ℝ+  | 
						
						
							| 27 | 
							
								
							 | 
							2timesgt | 
							⊢ ( π  ∈  ℝ+  →  π  <  ( 2  ·  π ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							mp1i | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  π  <  ( 2  ·  π ) )  | 
						
						
							| 29 | 
							
								7 19 20 25 28
							 | 
							lelttrd | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  𝐴  <  ( 2  ·  π ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  𝐴  <  ( 2  ·  π ) )  | 
						
						
							| 31 | 
							
								8 11 18 30
							 | 
							ltdiv1dd | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  ( 𝐴  /  ( 2  ·  π ) )  <  ( ( 2  ·  π )  /  ( 2  ·  π ) ) )  | 
						
						
							| 32 | 
							
								10
							 | 
							recni | 
							⊢ ( 2  ·  π )  ∈  ℂ  | 
						
						
							| 33 | 
							
								10 15
							 | 
							gt0ne0ii | 
							⊢ ( 2  ·  π )  ≠  0  | 
						
						
							| 34 | 
							
								32 33
							 | 
							dividi | 
							⊢ ( ( 2  ·  π )  /  ( 2  ·  π ) )  =  1  | 
						
						
							| 35 | 
							
								31 34
							 | 
							breqtrdi | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  ( 𝐴  /  ( 2  ·  π ) )  <  1 )  | 
						
						
							| 36 | 
							
								
							 | 
							0p1e1 | 
							⊢ ( 0  +  1 )  =  1  | 
						
						
							| 37 | 
							
								35 36
							 | 
							breqtrrdi | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  ( 𝐴  /  ( 2  ·  π ) )  <  ( 0  +  1 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							btwnnz | 
							⊢ ( ( 0  ∈  ℤ  ∧  0  <  ( 𝐴  /  ( 2  ·  π ) )  ∧  ( 𝐴  /  ( 2  ·  π ) )  <  ( 0  +  1 ) )  →  ¬  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ )  | 
						
						
							| 39 | 
							
								1 17 37 38
							 | 
							syl3anc | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  0  <  𝐴 )  →  ¬  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ )  | 
						
						
							| 40 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  ¬  0  <  𝐴 )  →  𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } ) )  | 
						
						
							| 41 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  ¬  0  <  𝐴 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 42 | 
							
								
							 | 
							0red | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  ¬  0  <  𝐴 )  →  0  ∈  ℝ )  | 
						
						
							| 43 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  ¬  0  <  𝐴 )  →  ¬  0  <  𝐴 )  | 
						
						
							| 44 | 
							
								41 42 43
							 | 
							nltled | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  ¬  0  <  𝐴 )  →  𝐴  ≤  0 )  | 
						
						
							| 45 | 
							
								
							 | 
							eldifsni | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  𝐴  ≠  0 )  | 
						
						
							| 46 | 
							
								45
							 | 
							necomd | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  0  ≠  𝐴 )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  ¬  0  <  𝐴 )  →  0  ≠  𝐴 )  | 
						
						
							| 48 | 
							
								41 42 44 47
							 | 
							leneltd | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  ¬  0  <  𝐴 )  →  𝐴  <  0 )  | 
						
						
							| 49 | 
							
								
							 | 
							neg1z | 
							⊢ - 1  ∈  ℤ  | 
						
						
							| 50 | 
							
								49
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  - 1  ∈  ℤ )  | 
						
						
							| 51 | 
							
								33
							 | 
							a1i | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  ( 2  ·  π )  ≠  0 )  | 
						
						
							| 52 | 
							
								7 20 51
							 | 
							redivcld | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℝ )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℝ )  | 
						
						
							| 54 | 
							
								
							 | 
							1red | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  1  ∈  ℝ )  | 
						
						
							| 55 | 
							
								7
							 | 
							recnd | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  𝐴  ∈  ℂ )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 57 | 
							
								32
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  ( 2  ·  π )  ∈  ℂ )  | 
						
						
							| 58 | 
							
								33
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  ( 2  ·  π )  ≠  0 )  | 
						
						
							| 59 | 
							
								56 57 58
							 | 
							divnegd | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  - ( 𝐴  /  ( 2  ·  π ) )  =  ( - 𝐴  /  ( 2  ·  π ) ) )  | 
						
						
							| 60 | 
							
								7
							 | 
							renegcld | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  - 𝐴  ∈  ℝ )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  - 𝐴  ∈  ℝ )  | 
						
						
							| 62 | 
							
								10
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  ( 2  ·  π )  ∈  ℝ )  | 
						
						
							| 63 | 
							
								
							 | 
							2rp | 
							⊢ 2  ∈  ℝ+  | 
						
						
							| 64 | 
							
								
							 | 
							rpmulcl | 
							⊢ ( ( 2  ∈  ℝ+  ∧  π  ∈  ℝ+ )  →  ( 2  ·  π )  ∈  ℝ+ )  | 
						
						
							| 65 | 
							
								63 26 64
							 | 
							mp2an | 
							⊢ ( 2  ·  π )  ∈  ℝ+  | 
						
						
							| 66 | 
							
								65
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  ( 2  ·  π )  ∈  ℝ+ )  | 
						
						
							| 67 | 
							
								
							 | 
							iccgelb | 
							⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  𝐴  ∈  ( - π [,] π ) )  →  - π  ≤  𝐴 )  | 
						
						
							| 68 | 
							
								22 23 6 67
							 | 
							syl3anc | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  - π  ≤  𝐴 )  | 
						
						
							| 69 | 
							
								19 7 68
							 | 
							lenegcon1d | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  - 𝐴  ≤  π )  | 
						
						
							| 70 | 
							
								60 19 20 69 28
							 | 
							lelttrd | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  - 𝐴  <  ( 2  ·  π ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  - 𝐴  <  ( 2  ·  π ) )  | 
						
						
							| 72 | 
							
								61 62 66 71
							 | 
							ltdiv1dd | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  ( - 𝐴  /  ( 2  ·  π ) )  <  ( ( 2  ·  π )  /  ( 2  ·  π ) ) )  | 
						
						
							| 73 | 
							
								72 34
							 | 
							breqtrdi | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  ( - 𝐴  /  ( 2  ·  π ) )  <  1 )  | 
						
						
							| 74 | 
							
								59 73
							 | 
							eqbrtrd | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  - ( 𝐴  /  ( 2  ·  π ) )  <  1 )  | 
						
						
							| 75 | 
							
								53 54 74
							 | 
							ltnegcon1d | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  - 1  <  ( 𝐴  /  ( 2  ·  π ) ) )  | 
						
						
							| 76 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 77 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  𝐴  <  0 )  | 
						
						
							| 78 | 
							
								76 66 77
							 | 
							divlt0gt0d | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  ( 𝐴  /  ( 2  ·  π ) )  <  0 )  | 
						
						
							| 79 | 
							
								
							 | 
							neg1cn | 
							⊢ - 1  ∈  ℂ  | 
						
						
							| 80 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 81 | 
							
								79 80
							 | 
							addcomi | 
							⊢ ( - 1  +  1 )  =  ( 1  +  - 1 )  | 
						
						
							| 82 | 
							
								
							 | 
							1pneg1e0 | 
							⊢ ( 1  +  - 1 )  =  0  | 
						
						
							| 83 | 
							
								81 82
							 | 
							eqtr2i | 
							⊢ 0  =  ( - 1  +  1 )  | 
						
						
							| 84 | 
							
								78 83
							 | 
							breqtrdi | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  ( 𝐴  /  ( 2  ·  π ) )  <  ( - 1  +  1 ) )  | 
						
						
							| 85 | 
							
								
							 | 
							btwnnz | 
							⊢ ( ( - 1  ∈  ℤ  ∧  - 1  <  ( 𝐴  /  ( 2  ·  π ) )  ∧  ( 𝐴  /  ( 2  ·  π ) )  <  ( - 1  +  1 ) )  →  ¬  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ )  | 
						
						
							| 86 | 
							
								50 75 84 85
							 | 
							syl3anc | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  𝐴  <  0 )  →  ¬  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ )  | 
						
						
							| 87 | 
							
								40 48 86
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  ∧  ¬  0  <  𝐴 )  →  ¬  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ )  | 
						
						
							| 88 | 
							
								39 87
							 | 
							pm2.61dan | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  ¬  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ )  | 
						
						
							| 89 | 
							
								65
							 | 
							a1i | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  ( 2  ·  π )  ∈  ℝ+ )  | 
						
						
							| 90 | 
							
								
							 | 
							mod0 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 2  ·  π )  ∈  ℝ+ )  →  ( ( 𝐴  mod  ( 2  ·  π ) )  =  0  ↔  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ ) )  | 
						
						
							| 91 | 
							
								7 89 90
							 | 
							syl2anc | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  ( ( 𝐴  mod  ( 2  ·  π ) )  =  0  ↔  ( 𝐴  /  ( 2  ·  π ) )  ∈  ℤ ) )  | 
						
						
							| 92 | 
							
								88 91
							 | 
							mtbird | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  ¬  ( 𝐴  mod  ( 2  ·  π ) )  =  0 )  | 
						
						
							| 93 | 
							
								92
							 | 
							neqned | 
							⊢ ( 𝐴  ∈  ( ( - π [,] π )  ∖  { 0 } )  →  ( 𝐴  mod  ( 2  ·  π ) )  ≠  0 )  |