| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem25.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem25.qf | 
							⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem25.cel | 
							⊢ ( 𝜑  →  𝐶  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem25.cnel | 
							⊢ ( 𝜑  →  ¬  𝐶  ∈  ran  𝑄 )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem25.i | 
							⊢ 𝐼  =  sup ( { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ,  ℝ ,   <  )  | 
						
						
							| 6 | 
							
								
							 | 
							ssrab2 | 
							⊢ { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ⊆  ( 0 ..^ 𝑀 )  | 
						
						
							| 7 | 
							
								
							 | 
							ltso | 
							⊢  <   Or  ℝ  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝜑  →   <   Or  ℝ )  | 
						
						
							| 9 | 
							
								
							 | 
							fzofi | 
							⊢ ( 0 ..^ 𝑀 )  ∈  Fin  | 
						
						
							| 10 | 
							
								
							 | 
							ssfi | 
							⊢ ( ( ( 0 ..^ 𝑀 )  ∈  Fin  ∧  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ⊆  ( 0 ..^ 𝑀 ) )  →  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ∈  Fin )  | 
						
						
							| 11 | 
							
								9 6 10
							 | 
							mp2an | 
							⊢ { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ∈  Fin  | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							⊢ ( 𝜑  →  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ∈  Fin )  | 
						
						
							| 13 | 
							
								
							 | 
							0zd | 
							⊢ ( 𝜑  →  0  ∈  ℤ )  | 
						
						
							| 14 | 
							
								1
							 | 
							nnzd | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 15 | 
							
								1
							 | 
							nngt0d | 
							⊢ ( 𝜑  →  0  <  𝑀 )  | 
						
						
							| 16 | 
							
								
							 | 
							fzolb | 
							⊢ ( 0  ∈  ( 0 ..^ 𝑀 )  ↔  ( 0  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  0  <  𝑀 ) )  | 
						
						
							| 17 | 
							
								13 14 15 16
							 | 
							syl3anbrc | 
							⊢ ( 𝜑  →  0  ∈  ( 0 ..^ 𝑀 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							elfzofz | 
							⊢ ( 0  ∈  ( 0 ..^ 𝑀 )  →  0  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 20 | 
							
								2 19
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  ∈  ℝ )  | 
						
						
							| 21 | 
							
								1
							 | 
							nnnn0d | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ0 )  | 
						
						
							| 22 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							eleqtrdi | 
							⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							eluzfz2 | 
							⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  𝑀  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 26 | 
							
								2 25
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  ∈  ℝ )  | 
						
						
							| 27 | 
							
								20 26
							 | 
							iccssred | 
							⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) )  ⊆  ℝ )  | 
						
						
							| 28 | 
							
								27 3
							 | 
							sseldd | 
							⊢ ( 𝜑  →  𝐶  ∈  ℝ )  | 
						
						
							| 29 | 
							
								20
							 | 
							rexrd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  ∈  ℝ* )  | 
						
						
							| 30 | 
							
								26
							 | 
							rexrd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  ∈  ℝ* )  | 
						
						
							| 31 | 
							
								
							 | 
							iccgelb | 
							⊢ ( ( ( 𝑄 ‘ 0 )  ∈  ℝ*  ∧  ( 𝑄 ‘ 𝑀 )  ∈  ℝ*  ∧  𝐶  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) )  →  ( 𝑄 ‘ 0 )  ≤  𝐶 )  | 
						
						
							| 32 | 
							
								29 30 3 31
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  ≤  𝐶 )  | 
						
						
							| 33 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝐶  =  ( 𝑄 ‘ 0 ) )  →  𝐶  =  ( 𝑄 ‘ 0 ) )  | 
						
						
							| 34 | 
							
								2
							 | 
							ffnd | 
							⊢ ( 𝜑  →  𝑄  Fn  ( 0 ... 𝑀 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐶  =  ( 𝑄 ‘ 0 ) )  →  𝑄  Fn  ( 0 ... 𝑀 ) )  | 
						
						
							| 36 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐶  =  ( 𝑄 ‘ 0 ) )  →  0  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							fnfvelrn | 
							⊢ ( ( 𝑄  Fn  ( 0 ... 𝑀 )  ∧  0  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 0 )  ∈  ran  𝑄 )  | 
						
						
							| 38 | 
							
								35 36 37
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐶  =  ( 𝑄 ‘ 0 ) )  →  ( 𝑄 ‘ 0 )  ∈  ran  𝑄 )  | 
						
						
							| 39 | 
							
								33 38
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝐶  =  ( 𝑄 ‘ 0 ) )  →  𝐶  ∈  ran  𝑄 )  | 
						
						
							| 40 | 
							
								4 39
							 | 
							mtand | 
							⊢ ( 𝜑  →  ¬  𝐶  =  ( 𝑄 ‘ 0 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							neqned | 
							⊢ ( 𝜑  →  𝐶  ≠  ( 𝑄 ‘ 0 ) )  | 
						
						
							| 42 | 
							
								20 28 32 41
							 | 
							leneltd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  <  𝐶 )  | 
						
						
							| 43 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  0  →  ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ 0 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							breq1d | 
							⊢ ( 𝑘  =  0  →  ( ( 𝑄 ‘ 𝑘 )  <  𝐶  ↔  ( 𝑄 ‘ 0 )  <  𝐶 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							elrab | 
							⊢ ( 0  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ↔  ( 0  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝑄 ‘ 0 )  <  𝐶 ) )  | 
						
						
							| 46 | 
							
								17 42 45
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  0  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } )  | 
						
						
							| 47 | 
							
								46
							 | 
							ne0d | 
							⊢ ( 𝜑  →  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ≠  ∅ )  | 
						
						
							| 48 | 
							
								
							 | 
							fzossfz | 
							⊢ ( 0 ..^ 𝑀 )  ⊆  ( 0 ... 𝑀 )  | 
						
						
							| 49 | 
							
								
							 | 
							fzssz | 
							⊢ ( 0 ... 𝑀 )  ⊆  ℤ  | 
						
						
							| 50 | 
							
								
							 | 
							zssre | 
							⊢ ℤ  ⊆  ℝ  | 
						
						
							| 51 | 
							
								49 50
							 | 
							sstri | 
							⊢ ( 0 ... 𝑀 )  ⊆  ℝ  | 
						
						
							| 52 | 
							
								48 51
							 | 
							sstri | 
							⊢ ( 0 ..^ 𝑀 )  ⊆  ℝ  | 
						
						
							| 53 | 
							
								6 52
							 | 
							sstri | 
							⊢ { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ⊆  ℝ  | 
						
						
							| 54 | 
							
								53
							 | 
							a1i | 
							⊢ ( 𝜑  →  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ⊆  ℝ )  | 
						
						
							| 55 | 
							
								
							 | 
							fisupcl | 
							⊢ ( (  <   Or  ℝ  ∧  ( { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ∈  Fin  ∧  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ≠  ∅  ∧  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ⊆  ℝ ) )  →  sup ( { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ,  ℝ ,   <  )  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } )  | 
						
						
							| 56 | 
							
								8 12 47 54 55
							 | 
							syl13anc | 
							⊢ ( 𝜑  →  sup ( { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ,  ℝ ,   <  )  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } )  | 
						
						
							| 57 | 
							
								6 56
							 | 
							sselid | 
							⊢ ( 𝜑  →  sup ( { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ,  ℝ ,   <  )  ∈  ( 0 ..^ 𝑀 ) )  | 
						
						
							| 58 | 
							
								5 57
							 | 
							eqeltrid | 
							⊢ ( 𝜑  →  𝐼  ∈  ( 0 ..^ 𝑀 ) )  | 
						
						
							| 59 | 
							
								48 58
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝐼  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 60 | 
							
								2 59
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝐼 )  ∈  ℝ )  | 
						
						
							| 61 | 
							
								60
							 | 
							rexrd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝐼 )  ∈  ℝ* )  | 
						
						
							| 62 | 
							
								
							 | 
							fzofzp1 | 
							⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 63 | 
							
								58 62
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 64 | 
							
								2 63
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ∈  ℝ )  | 
						
						
							| 65 | 
							
								64
							 | 
							rexrd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ∈  ℝ* )  | 
						
						
							| 66 | 
							
								5 56
							 | 
							eqeltrid | 
							⊢ ( 𝜑  →  𝐼  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } )  | 
						
						
							| 67 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐼  →  ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ 𝐼 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							breq1d | 
							⊢ ( 𝑘  =  𝐼  →  ( ( 𝑄 ‘ 𝑘 )  <  𝐶  ↔  ( 𝑄 ‘ 𝐼 )  <  𝐶 ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							elrab | 
							⊢ ( 𝐼  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ↔  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝑄 ‘ 𝐼 )  <  𝐶 ) )  | 
						
						
							| 70 | 
							
								66 69
							 | 
							sylib | 
							⊢ ( 𝜑  →  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝑄 ‘ 𝐼 )  <  𝐶 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							simprd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝐼 )  <  𝐶 )  | 
						
						
							| 72 | 
							
								52 58
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝐼  ∈  ℝ )  | 
						
						
							| 73 | 
							
								
							 | 
							ltp1 | 
							⊢ ( 𝐼  ∈  ℝ  →  𝐼  <  ( 𝐼  +  1 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							id | 
							⊢ ( 𝐼  ∈  ℝ  →  𝐼  ∈  ℝ )  | 
						
						
							| 75 | 
							
								
							 | 
							peano2re | 
							⊢ ( 𝐼  ∈  ℝ  →  ( 𝐼  +  1 )  ∈  ℝ )  | 
						
						
							| 76 | 
							
								74 75
							 | 
							ltnled | 
							⊢ ( 𝐼  ∈  ℝ  →  ( 𝐼  <  ( 𝐼  +  1 )  ↔  ¬  ( 𝐼  +  1 )  ≤  𝐼 ) )  | 
						
						
							| 77 | 
							
								73 76
							 | 
							mpbid | 
							⊢ ( 𝐼  ∈  ℝ  →  ¬  ( 𝐼  +  1 )  ≤  𝐼 )  | 
						
						
							| 78 | 
							
								72 77
							 | 
							syl | 
							⊢ ( 𝜑  →  ¬  ( 𝐼  +  1 )  ≤  𝐼 )  | 
						
						
							| 79 | 
							
								48 49
							 | 
							sstri | 
							⊢ ( 0 ..^ 𝑀 )  ⊆  ℤ  | 
						
						
							| 80 | 
							
								6 79
							 | 
							sstri | 
							⊢ { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ⊆  ℤ  | 
						
						
							| 81 | 
							
								80
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ⊆  ℤ )  | 
						
						
							| 82 | 
							
								
							 | 
							elrabi | 
							⊢ ( ℎ  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  →  ℎ  ∈  ( 0 ..^ 𝑀 ) )  | 
						
						
							| 83 | 
							
								
							 | 
							elfzo0le | 
							⊢ ( ℎ  ∈  ( 0 ..^ 𝑀 )  →  ℎ  ≤  𝑀 )  | 
						
						
							| 84 | 
							
								82 83
							 | 
							syl | 
							⊢ ( ℎ  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  →  ℎ  ≤  𝑀 )  | 
						
						
							| 85 | 
							
								84
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ℎ  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } )  →  ℎ  ≤  𝑀 )  | 
						
						
							| 86 | 
							
								85
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ ℎ  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ℎ  ≤  𝑀 )  | 
						
						
							| 87 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑚  =  𝑀  →  ( ℎ  ≤  𝑚  ↔  ℎ  ≤  𝑀 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							ralbidv | 
							⊢ ( 𝑚  =  𝑀  →  ( ∀ ℎ  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ℎ  ≤  𝑚  ↔  ∀ ℎ  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ℎ  ≤  𝑀 ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							rspcev | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  ∀ ℎ  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ℎ  ≤  𝑀 )  →  ∃ 𝑚  ∈  ℤ ∀ ℎ  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ℎ  ≤  𝑚 )  | 
						
						
							| 90 | 
							
								14 86 89
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℤ ∀ ℎ  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ℎ  ≤  𝑚 )  | 
						
						
							| 91 | 
							
								90
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ∃ 𝑚  ∈  ℤ ∀ ℎ  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ℎ  ≤  𝑚 )  | 
						
						
							| 92 | 
							
								
							 | 
							elfzuz | 
							⊢ ( ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 )  →  ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 93 | 
							
								63 92
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 95 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  𝑀  ∈  ℤ )  | 
						
						
							| 96 | 
							
								51 63
							 | 
							sselid | 
							⊢ ( 𝜑  →  ( 𝐼  +  1 )  ∈  ℝ )  | 
						
						
							| 97 | 
							
								96
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ( 𝐼  +  1 )  ∈  ℝ )  | 
						
						
							| 98 | 
							
								95
							 | 
							zred | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  𝑀  ∈  ℝ )  | 
						
						
							| 99 | 
							
								
							 | 
							elfzle2 | 
							⊢ ( ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 )  →  ( 𝐼  +  1 )  ≤  𝑀 )  | 
						
						
							| 100 | 
							
								63 99
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐼  +  1 )  ≤  𝑀 )  | 
						
						
							| 101 | 
							
								100
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ( 𝐼  +  1 )  ≤  𝑀 )  | 
						
						
							| 102 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  | 
						
						
							| 103 | 
							
								64
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ∈  ℝ )  | 
						
						
							| 104 | 
							
								28
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  𝐶  ∈  ℝ )  | 
						
						
							| 105 | 
							
								103 104
							 | 
							ltnled | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ( ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶  ↔  ¬  𝐶  ≤  ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  | 
						
						
							| 106 | 
							
								102 105
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ¬  𝐶  ≤  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 107 | 
							
								
							 | 
							iccleub | 
							⊢ ( ( ( 𝑄 ‘ 0 )  ∈  ℝ*  ∧  ( 𝑄 ‘ 𝑀 )  ∈  ℝ*  ∧  𝐶  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) )  →  𝐶  ≤  ( 𝑄 ‘ 𝑀 ) )  | 
						
						
							| 108 | 
							
								29 30 3 107
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  𝐶  ≤  ( 𝑄 ‘ 𝑀 ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑀  =  ( 𝐼  +  1 ) )  →  𝐶  ≤  ( 𝑄 ‘ 𝑀 ) )  | 
						
						
							| 110 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑀  =  ( 𝐼  +  1 )  →  ( 𝑄 ‘ 𝑀 )  =  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑀  =  ( 𝐼  +  1 ) )  →  ( 𝑄 ‘ 𝑀 )  =  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 112 | 
							
								109 111
							 | 
							breqtrd | 
							⊢ ( ( 𝜑  ∧  𝑀  =  ( 𝐼  +  1 ) )  →  𝐶  ≤  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  ∧  𝑀  =  ( 𝐼  +  1 ) )  →  𝐶  ≤  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 114 | 
							
								106 113
							 | 
							mtand | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ¬  𝑀  =  ( 𝐼  +  1 ) )  | 
						
						
							| 115 | 
							
								114
							 | 
							neqned | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  𝑀  ≠  ( 𝐼  +  1 ) )  | 
						
						
							| 116 | 
							
								97 98 101 115
							 | 
							leneltd | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ( 𝐼  +  1 )  <  𝑀 )  | 
						
						
							| 117 | 
							
								
							 | 
							elfzo2 | 
							⊢ ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝑀 )  ↔  ( ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑀  ∈  ℤ  ∧  ( 𝐼  +  1 )  <  𝑀 ) )  | 
						
						
							| 118 | 
							
								94 95 116 117
							 | 
							syl3anbrc | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝑀 ) )  | 
						
						
							| 119 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  ( 𝐼  +  1 )  →  ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 120 | 
							
								119
							 | 
							breq1d | 
							⊢ ( 𝑘  =  ( 𝐼  +  1 )  →  ( ( 𝑄 ‘ 𝑘 )  <  𝐶  ↔  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 ) )  | 
						
						
							| 121 | 
							
								120
							 | 
							elrab | 
							⊢ ( ( 𝐼  +  1 )  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ↔  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 ) )  | 
						
						
							| 122 | 
							
								118 102 121
							 | 
							sylanbrc | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ( 𝐼  +  1 )  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } )  | 
						
						
							| 123 | 
							
								
							 | 
							suprzub | 
							⊢ ( ( { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 }  ⊆  ℤ  ∧  ∃ 𝑚  ∈  ℤ ∀ ℎ  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ℎ  ≤  𝑚  ∧  ( 𝐼  +  1 )  ∈  { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } )  →  ( 𝐼  +  1 )  ≤  sup ( { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ,  ℝ ,   <  ) )  | 
						
						
							| 124 | 
							
								81 91 122 123
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ( 𝐼  +  1 )  ≤  sup ( { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  𝐶 } ,  ℝ ,   <  ) )  | 
						
						
							| 125 | 
							
								124 5
							 | 
							breqtrrdi | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  →  ( 𝐼  +  1 )  ≤  𝐼 )  | 
						
						
							| 126 | 
							
								78 125
							 | 
							mtand | 
							⊢ ( 𝜑  →  ¬  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶 )  | 
						
						
							| 127 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶  ↔  𝐶  =  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							biimpi | 
							⊢ ( ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶  →  𝐶  =  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 129 | 
							
								128
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶 )  →  𝐶  =  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 130 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶 )  →  𝑄  Fn  ( 0 ... 𝑀 ) )  | 
						
						
							| 131 | 
							
								63
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶 )  →  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 132 | 
							
								
							 | 
							fnfvelrn | 
							⊢ ( ( 𝑄  Fn  ( 0 ... 𝑀 )  ∧  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ∈  ran  𝑄 )  | 
						
						
							| 133 | 
							
								130 131 132
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶 )  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ∈  ran  𝑄 )  | 
						
						
							| 134 | 
							
								129 133
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶 )  →  𝐶  ∈  ran  𝑄 )  | 
						
						
							| 135 | 
							
								4 134
							 | 
							mtand | 
							⊢ ( 𝜑  →  ¬  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶 )  | 
						
						
							| 136 | 
							
								126 135
							 | 
							jca | 
							⊢ ( 𝜑  →  ( ¬  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶  ∧  ¬  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶 ) )  | 
						
						
							| 137 | 
							
								
							 | 
							pm4.56 | 
							⊢ ( ( ¬  ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶  ∧  ¬  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶 )  ↔  ¬  ( ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶  ∨  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶 ) )  | 
						
						
							| 138 | 
							
								136 137
							 | 
							sylib | 
							⊢ ( 𝜑  →  ¬  ( ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶  ∨  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶 ) )  | 
						
						
							| 139 | 
							
								64 28
							 | 
							leloed | 
							⊢ ( 𝜑  →  ( ( 𝑄 ‘ ( 𝐼  +  1 ) )  ≤  𝐶  ↔  ( ( 𝑄 ‘ ( 𝐼  +  1 ) )  <  𝐶  ∨  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  𝐶 ) ) )  | 
						
						
							| 140 | 
							
								138 139
							 | 
							mtbird | 
							⊢ ( 𝜑  →  ¬  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ≤  𝐶 )  | 
						
						
							| 141 | 
							
								28 64
							 | 
							ltnled | 
							⊢ ( 𝜑  →  ( 𝐶  <  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ↔  ¬  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ≤  𝐶 ) )  | 
						
						
							| 142 | 
							
								140 141
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝐶  <  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 143 | 
							
								61 65 28 71 142
							 | 
							eliood | 
							⊢ ( 𝜑  →  𝐶  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  | 
						
						
							| 144 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝐼  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝐼 ) )  | 
						
						
							| 145 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑗  =  𝐼  →  ( 𝑗  +  1 )  =  ( 𝐼  +  1 ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							fveq2d | 
							⊢ ( 𝑗  =  𝐼  →  ( 𝑄 ‘ ( 𝑗  +  1 ) )  =  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 147 | 
							
								144 146
							 | 
							oveq12d | 
							⊢ ( 𝑗  =  𝐼  →  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) )  =  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							eleq2d | 
							⊢ ( 𝑗  =  𝐼  →  ( 𝐶  ∈  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) )  ↔  𝐶  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) ) )  | 
						
						
							| 149 | 
							
								148
							 | 
							rspcev | 
							⊢ ( ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐶  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑀 ) 𝐶  ∈  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  | 
						
						
							| 150 | 
							
								58 143 149
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑀 ) 𝐶  ∈  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  |