| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem27.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ* )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem27.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ* )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem27.q | 
							⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem27.i | 
							⊢ ( 𝜑  →  𝐼  ∈  ( 0 ..^ 𝑀 ) )  | 
						
						
							| 5 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  𝐴  ∈  ℝ* )  | 
						
						
							| 6 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 7 | 
							
								
							 | 
							elioore | 
							⊢ ( 𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 9 | 
							
								
							 | 
							iccssxr | 
							⊢ ( 𝐴 [,] 𝐵 )  ⊆  ℝ*  | 
						
						
							| 10 | 
							
								
							 | 
							elfzofz | 
							⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  𝐼  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐼  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝐼 )  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							sselid | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝐼 )  ∈  ℝ* )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝐼 )  ∈  ℝ* )  | 
						
						
							| 15 | 
							
								8
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  𝑥  ∈  ℝ* )  | 
						
						
							| 16 | 
							
								
							 | 
							iccgelb | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝑄 ‘ 𝐼 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  ( 𝑄 ‘ 𝐼 ) )  | 
						
						
							| 17 | 
							
								1 2 12 16
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  𝐴  ≤  ( 𝑄 ‘ 𝐼 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  𝐴  ≤  ( 𝑄 ‘ 𝐼 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fzofzp1 | 
							⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 20 | 
							
								4 19
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) )  | 
						
						
							| 21 | 
							
								3 20
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 22 | 
							
								9 21
							 | 
							sselid | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ∈  ℝ* )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ∈  ℝ* )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							ioogtlb | 
							⊢ ( ( ( 𝑄 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝐼 )  <  𝑥 )  | 
						
						
							| 26 | 
							
								14 23 24 25
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝐼 )  <  𝑥 )  | 
						
						
							| 27 | 
							
								5 14 15 18 26
							 | 
							xrlelttrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  𝐴  <  𝑥 )  | 
						
						
							| 28 | 
							
								
							 | 
							iooltub | 
							⊢ ( ( ( 𝑄 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  𝑥  <  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 29 | 
							
								14 23 24 28
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  𝑥  <  ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							iccleub | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ≤  𝐵 )  | 
						
						
							| 31 | 
							
								1 2 21 30
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ≤  𝐵 )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ≤  𝐵 )  | 
						
						
							| 33 | 
							
								15 23 6 29 32
							 | 
							xrltletrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  𝑥  <  𝐵 )  | 
						
						
							| 34 | 
							
								5 6 8 27 33
							 | 
							eliood | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) )  →  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) 𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							dfss3 | 
							⊢ ( ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  ⊆  ( 𝐴 (,) 𝐵 )  ↔  ∀ 𝑥  ∈  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) 𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼  +  1 ) ) )  ⊆  ( 𝐴 (,) 𝐵 ) )  |