| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem28.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
fourierdlem28.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 3 |
|
fourierdlem28.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
fourierdlem28.3b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 5 |
|
fourierdlem28.d |
⊢ 𝐷 = ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) |
| 6 |
|
fourierdlem28.df |
⊢ ( 𝜑 → 𝐷 : ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⟶ ℝ ) |
| 7 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 9 |
2 3
|
readdcld |
⊢ ( 𝜑 → ( 𝑋 + 𝐴 ) ∈ ℝ ) |
| 10 |
9
|
rexrd |
⊢ ( 𝜑 → ( 𝑋 + 𝐴 ) ∈ ℝ* ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝐴 ) ∈ ℝ* ) |
| 12 |
2 4
|
readdcld |
⊢ ( 𝜑 → ( 𝑋 + 𝐵 ) ∈ ℝ ) |
| 13 |
12
|
rexrd |
⊢ ( 𝜑 → ( 𝑋 + 𝐵 ) ∈ ℝ* ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝐵 ) ∈ ℝ* ) |
| 15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑋 ∈ ℝ ) |
| 16 |
|
elioore |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → 𝑠 ∈ ℝ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ℝ ) |
| 18 |
15 17
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 19 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 20 |
19
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 21 |
4
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 24 |
|
ioogtlb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑠 ) |
| 25 |
20 22 23 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑠 ) |
| 26 |
19 17 15 25
|
ltadd2dd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝐴 ) < ( 𝑋 + 𝑠 ) ) |
| 27 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 28 |
|
iooltub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 < 𝐵 ) |
| 29 |
20 22 23 28
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 < 𝐵 ) |
| 30 |
17 27 15 29
|
ltadd2dd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝑠 ) < ( 𝑋 + 𝐵 ) ) |
| 31 |
11 14 18 26 30
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝑠 ) ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) |
| 32 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ∈ ℝ ) |
| 33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 34 |
|
elioore |
⊢ ( 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) → 𝑦 ∈ ℝ ) |
| 36 |
33 35
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 37 |
36
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 38 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) → ( 𝐷 ‘ 𝑦 ) ∈ ℝ ) |
| 39 |
15
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑋 ∈ ℂ ) |
| 40 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ∈ ℝ ) |
| 41 |
|
iooretop |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
| 42 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 43 |
41 42
|
eleqtri |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 45 |
2
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 46 |
8 44 45
|
dvmptconst |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑋 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
| 47 |
17
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ℂ ) |
| 48 |
8 44
|
dvmptidg |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑠 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 49 |
8 39 40 46 47 32 48
|
dvmptadd |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑋 + 𝑠 ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 0 + 1 ) ) ) |
| 50 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 51 |
50
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 0 + 1 ) = 1 ) |
| 52 |
51
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 0 + 1 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 53 |
49 52
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑋 + 𝑠 ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 54 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 55 |
54
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) = ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) |
| 56 |
|
ioossre |
⊢ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⊆ ℝ |
| 57 |
56
|
a1i |
⊢ ( 𝜑 → ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⊆ ℝ ) |
| 58 |
57
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) = ( 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 59 |
55 58
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) |
| 60 |
59
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ) |
| 61 |
5
|
eqcomi |
⊢ ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) = 𝐷 |
| 62 |
61
|
a1i |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) = 𝐷 ) |
| 63 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝐷 = ( 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ↦ ( 𝐷 ‘ 𝑦 ) ) ) |
| 64 |
60 62 63
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ↦ ( 𝐷 ‘ 𝑦 ) ) ) |
| 65 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑋 + 𝑠 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑋 + 𝑠 ) → ( 𝐷 ‘ 𝑦 ) = ( 𝐷 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 67 |
8 8 31 32 37 38 53 64 65 66
|
dvmptco |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐷 ‘ ( 𝑋 + 𝑠 ) ) · 1 ) ) ) |
| 68 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐷 : ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⟶ ℝ ) |
| 69 |
68 31
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐷 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
| 70 |
69
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐷 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 71 |
70
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐷 ‘ ( 𝑋 + 𝑠 ) ) · 1 ) = ( 𝐷 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 72 |
71
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐷 ‘ ( 𝑋 + 𝑠 ) ) · 1 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐷 ‘ ( 𝑋 + 𝑠 ) ) ) ) |
| 73 |
67 72
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐷 ‘ ( 𝑋 + 𝑠 ) ) ) ) |