Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem29.1 |
⊢ 𝐾 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
2 |
|
eqeq1 |
⊢ ( 𝑠 = 𝐴 → ( 𝑠 = 0 ↔ 𝐴 = 0 ) ) |
3 |
|
id |
⊢ ( 𝑠 = 𝐴 → 𝑠 = 𝐴 ) |
4 |
|
fvoveq1 |
⊢ ( 𝑠 = 𝐴 → ( sin ‘ ( 𝑠 / 2 ) ) = ( sin ‘ ( 𝐴 / 2 ) ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑠 = 𝐴 → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) = ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) |
6 |
3 5
|
oveq12d |
⊢ ( 𝑠 = 𝐴 → ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) = ( 𝐴 / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
7 |
2 6
|
ifbieq2d |
⊢ ( 𝑠 = 𝐴 → if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = if ( 𝐴 = 0 , 1 , ( 𝐴 / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
8 |
|
1ex |
⊢ 1 ∈ V |
9 |
|
ovex |
⊢ ( 𝐴 / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ∈ V |
10 |
8 9
|
ifex |
⊢ if ( 𝐴 = 0 , 1 , ( 𝐴 / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) ∈ V |
11 |
7 1 10
|
fvmpt |
⊢ ( 𝐴 ∈ ( - π [,] π ) → ( 𝐾 ‘ 𝐴 ) = if ( 𝐴 = 0 , 1 , ( 𝐴 / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) ) |