| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem3.1 | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ( - π [,] π )  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑚 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑚  =  𝑀  →  ( 0 ... 𝑚 )  =  ( 0 ... 𝑀 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑚  =  𝑀  →  ( ( - π [,] π )  ↑m  ( 0 ... 𝑚 ) )  =  ( ( - π [,] π )  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 4 |  | fveqeq2 | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝑝 ‘ 𝑚 )  =  π  ↔  ( 𝑝 ‘ 𝑀 )  =  π ) ) | 
						
							| 5 | 4 | anbi2d | ⊢ ( 𝑚  =  𝑀  →  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑚 )  =  π )  ↔  ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑀 )  =  π ) ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑚  =  𝑀  →  ( 0 ..^ 𝑚 )  =  ( 0 ..^ 𝑀 ) ) | 
						
							| 7 | 6 | raleqdv | ⊢ ( 𝑚  =  𝑀  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 8 | 5 7 | anbi12d | ⊢ ( 𝑚  =  𝑀  →  ( ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑚 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 9 | 3 8 | rabeqbidv | ⊢ ( 𝑚  =  𝑀  →  { 𝑝  ∈  ( ( - π [,] π )  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑚 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) }  =  { 𝑝  ∈  ( ( - π [,] π )  ↑m  ( 0 ... 𝑀 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 10 |  | ovex | ⊢ ( ( - π [,] π )  ↑m  ( 0 ... 𝑀 ) )  ∈  V | 
						
							| 11 | 10 | rabex | ⊢ { 𝑝  ∈  ( ( - π [,] π )  ↑m  ( 0 ... 𝑀 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) }  ∈  V | 
						
							| 12 | 9 1 11 | fvmpt | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃 ‘ 𝑀 )  =  { 𝑝  ∈  ( ( - π [,] π )  ↑m  ( 0 ... 𝑀 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  𝑄  ∈  { 𝑝  ∈  ( ( - π [,] π )  ↑m  ( 0 ... 𝑀 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) ) | 
						
							| 14 |  | fveq1 | ⊢ ( 𝑝  =  𝑄  →  ( 𝑝 ‘ 0 )  =  ( 𝑄 ‘ 0 ) ) | 
						
							| 15 | 14 | eqeq1d | ⊢ ( 𝑝  =  𝑄  →  ( ( 𝑝 ‘ 0 )  =  - π  ↔  ( 𝑄 ‘ 0 )  =  - π ) ) | 
						
							| 16 |  | fveq1 | ⊢ ( 𝑝  =  𝑄  →  ( 𝑝 ‘ 𝑀 )  =  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( 𝑝  =  𝑄  →  ( ( 𝑝 ‘ 𝑀 )  =  π  ↔  ( 𝑄 ‘ 𝑀 )  =  π ) ) | 
						
							| 18 | 15 17 | anbi12d | ⊢ ( 𝑝  =  𝑄  →  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑀 )  =  π )  ↔  ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π ) ) ) | 
						
							| 19 |  | fveq1 | ⊢ ( 𝑝  =  𝑄  →  ( 𝑝 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 20 |  | fveq1 | ⊢ ( 𝑝  =  𝑄  →  ( 𝑝 ‘ ( 𝑖  +  1 ) )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 21 | 19 20 | breq12d | ⊢ ( 𝑝  =  𝑄  →  ( ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 22 | 21 | ralbidv | ⊢ ( 𝑝  =  𝑄  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 23 | 18 22 | anbi12d | ⊢ ( 𝑝  =  𝑄  →  ( ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 24 | 23 | elrab | ⊢ ( 𝑄  ∈  { 𝑝  ∈  ( ( - π [,] π )  ↑m  ( 0 ... 𝑀 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) }  ↔  ( 𝑄  ∈  ( ( - π [,] π )  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 25 | 13 24 | bitrdi | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ( - π [,] π )  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) |