Metamath Proof Explorer


Theorem fourierdlem31

Description: If A is finite and for any element in A there is a number m such that a property holds for all numbers larger than m , then there is a number n such that the property holds for all numbers larger than n and for all elements in A . (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 29-Sep-2020)

Ref Expression
Hypotheses fourierdlem31.i 𝑖 𝜑
fourierdlem31.r 𝑟 𝜑
fourierdlem31.iv 𝑖 𝑉
fourierdlem31.a ( 𝜑𝐴 ∈ Fin )
fourierdlem31.exm ( 𝜑 → ∀ 𝑖𝐴𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 )
fourierdlem31.m 𝑀 = { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 }
fourierdlem31.v 𝑉 = ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) )
fourierdlem31.n 𝑁 = sup ( ran 𝑉 , ℝ , < )
Assertion fourierdlem31 ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )

Proof

Step Hyp Ref Expression
1 fourierdlem31.i 𝑖 𝜑
2 fourierdlem31.r 𝑟 𝜑
3 fourierdlem31.iv 𝑖 𝑉
4 fourierdlem31.a ( 𝜑𝐴 ∈ Fin )
5 fourierdlem31.exm ( 𝜑 → ∀ 𝑖𝐴𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 )
6 fourierdlem31.m 𝑀 = { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 }
7 fourierdlem31.v 𝑉 = ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) )
8 fourierdlem31.n 𝑁 = sup ( ran 𝑉 , ℝ , < )
9 1nn 1 ∈ ℕ
10 rzal ( 𝐴 = ∅ → ∀ 𝑖𝐴 𝜒 )
11 10 ralrimivw ( 𝐴 = ∅ → ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
12 oveq1 ( 𝑛 = 1 → ( 𝑛 (,) +∞ ) = ( 1 (,) +∞ ) )
13 12 raleqdv ( 𝑛 = 1 → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ) )
14 13 rspcev ( ( 1 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
15 9 11 14 sylancr ( 𝐴 = ∅ → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
16 15 adantl ( ( 𝜑𝐴 = ∅ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
17 6 a1i ( ( 𝜑𝑖𝐴 ) → 𝑀 = { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } )
18 17 infeq1d ( ( 𝜑𝑖𝐴 ) → inf ( 𝑀 , ℝ , < ) = inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) )
19 ssrab2 { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ℕ
20 nnuz ℕ = ( ℤ ‘ 1 )
21 19 20 sseqtri { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ( ℤ ‘ 1 )
22 5 r19.21bi ( ( 𝜑𝑖𝐴 ) → ∃ 𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 )
23 rabn0 ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ ↔ ∃ 𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 )
24 22 23 sylibr ( ( 𝜑𝑖𝐴 ) → { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ )
25 infssuzcl ( ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ( ℤ ‘ 1 ) ∧ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } )
26 21 24 25 sylancr ( ( 𝜑𝑖𝐴 ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } )
27 19 26 sseldi ( ( 𝜑𝑖𝐴 ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ ℕ )
28 18 27 eqeltrd ( ( 𝜑𝑖𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ℕ )
29 28 ex ( 𝜑 → ( 𝑖𝐴 → inf ( 𝑀 , ℝ , < ) ∈ ℕ ) )
30 1 29 ralrimi ( 𝜑 → ∀ 𝑖𝐴 inf ( 𝑀 , ℝ , < ) ∈ ℕ )
31 7 rnmptss ( ∀ 𝑖𝐴 inf ( 𝑀 , ℝ , < ) ∈ ℕ → ran 𝑉 ⊆ ℕ )
32 30 31 syl ( 𝜑 → ran 𝑉 ⊆ ℕ )
33 32 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ⊆ ℕ )
34 ltso < Or ℝ
35 34 a1i ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → < Or ℝ )
36 mptfi ( 𝐴 ∈ Fin → ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) ∈ Fin )
37 4 36 syl ( 𝜑 → ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) ∈ Fin )
38 7 37 eqeltrid ( 𝜑𝑉 ∈ Fin )
39 rnfi ( 𝑉 ∈ Fin → ran 𝑉 ∈ Fin )
40 38 39 syl ( 𝜑 → ran 𝑉 ∈ Fin )
41 40 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ∈ Fin )
42 neqne ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ )
43 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑖 𝑖𝐴 )
44 42 43 sylib ( ¬ 𝐴 = ∅ → ∃ 𝑖 𝑖𝐴 )
45 44 adantl ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑖 𝑖𝐴 )
46 nfv 𝑖 ¬ 𝐴 = ∅
47 1 46 nfan 𝑖 ( 𝜑 ∧ ¬ 𝐴 = ∅ )
48 3 nfrn 𝑖 ran 𝑉
49 nfcv 𝑖
50 48 49 nfne 𝑖 ran 𝑉 ≠ ∅
51 simpr ( ( 𝜑𝑖𝐴 ) → 𝑖𝐴 )
52 7 elrnmpt1 ( ( 𝑖𝐴 ∧ inf ( 𝑀 , ℝ , < ) ∈ ℕ ) → inf ( 𝑀 , ℝ , < ) ∈ ran 𝑉 )
53 51 28 52 syl2anc ( ( 𝜑𝑖𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ran 𝑉 )
54 53 ne0d ( ( 𝜑𝑖𝐴 ) → ran 𝑉 ≠ ∅ )
55 54 ex ( 𝜑 → ( 𝑖𝐴 → ran 𝑉 ≠ ∅ ) )
56 55 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ( 𝑖𝐴 → ran 𝑉 ≠ ∅ ) )
57 47 50 56 exlimd ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ( ∃ 𝑖 𝑖𝐴 → ran 𝑉 ≠ ∅ ) )
58 45 57 mpd ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ≠ ∅ )
59 nnssre ℕ ⊆ ℝ
60 33 59 sstrdi ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ⊆ ℝ )
61 fisupcl ( ( < Or ℝ ∧ ( ran 𝑉 ∈ Fin ∧ ran 𝑉 ≠ ∅ ∧ ran 𝑉 ⊆ ℝ ) ) → sup ( ran 𝑉 , ℝ , < ) ∈ ran 𝑉 )
62 35 41 58 60 61 syl13anc ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( ran 𝑉 , ℝ , < ) ∈ ran 𝑉 )
63 33 62 sseldd ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( ran 𝑉 , ℝ , < ) ∈ ℕ )
64 8 63 eqeltrid ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝑁 ∈ ℕ )
65 nfcv 𝑖
66 nfcv 𝑖 <
67 48 65 66 nfsup 𝑖 sup ( ran 𝑉 , ℝ , < )
68 8 67 nfcxfr 𝑖 𝑁
69 nfcv 𝑖 (,)
70 nfcv 𝑖 +∞
71 68 69 70 nfov 𝑖 ( 𝑁 (,) +∞ )
72 71 nfcri 𝑖 𝑟 ∈ ( 𝑁 (,) +∞ )
73 1 72 nfan 𝑖 ( 𝜑𝑟 ∈ ( 𝑁 (,) +∞ ) )
74 7 fvmpt2 ( ( 𝑖𝐴 ∧ inf ( 𝑀 , ℝ , < ) ∈ ℕ ) → ( 𝑉𝑖 ) = inf ( 𝑀 , ℝ , < ) )
75 51 28 74 syl2anc ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) = inf ( 𝑀 , ℝ , < ) )
76 28 nnxrd ( ( 𝜑𝑖𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ℝ* )
77 75 76 eqeltrd ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ∈ ℝ* )
78 77 adantr ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉𝑖 ) ∈ ℝ* )
79 pnfxr +∞ ∈ ℝ*
80 79 a1i ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → +∞ ∈ ℝ* )
81 elioore ( 𝑟 ∈ ( 𝑁 (,) +∞ ) → 𝑟 ∈ ℝ )
82 81 adantl ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ℝ )
83 75 28 eqeltrd ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ∈ ℕ )
84 83 nnred ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ∈ ℝ )
85 84 adantr ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉𝑖 ) ∈ ℝ )
86 ne0i ( 𝑖𝐴𝐴 ≠ ∅ )
87 86 adantl ( ( 𝜑𝑖𝐴 ) → 𝐴 ≠ ∅ )
88 87 neneqd ( ( 𝜑𝑖𝐴 ) → ¬ 𝐴 = ∅ )
89 88 64 syldan ( ( 𝜑𝑖𝐴 ) → 𝑁 ∈ ℕ )
90 89 nnred ( ( 𝜑𝑖𝐴 ) → 𝑁 ∈ ℝ )
91 90 adantr ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 ∈ ℝ )
92 88 60 syldan ( ( 𝜑𝑖𝐴 ) → ran 𝑉 ⊆ ℝ )
93 32 59 sstrdi ( 𝜑 → ran 𝑉 ⊆ ℝ )
94 fimaxre2 ( ( ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦𝑥 )
95 93 40 94 syl2anc ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦𝑥 )
96 95 adantr ( ( 𝜑𝑖𝐴 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦𝑥 )
97 75 53 eqeltrd ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ∈ ran 𝑉 )
98 suprub ( ( ( ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦𝑥 ) ∧ ( 𝑉𝑖 ) ∈ ran 𝑉 ) → ( 𝑉𝑖 ) ≤ sup ( ran 𝑉 , ℝ , < ) )
99 92 54 96 97 98 syl31anc ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ≤ sup ( ran 𝑉 , ℝ , < ) )
100 99 8 breqtrrdi ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ≤ 𝑁 )
101 100 adantr ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉𝑖 ) ≤ 𝑁 )
102 91 rexrd ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 ∈ ℝ* )
103 simpr ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ( 𝑁 (,) +∞ ) )
104 ioogtlb ( ( 𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 < 𝑟 )
105 102 80 103 104 syl3anc ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 < 𝑟 )
106 85 91 82 101 105 lelttrd ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉𝑖 ) < 𝑟 )
107 82 ltpnfd ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 < +∞ )
108 78 80 82 106 107 eliood ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) )
109 18 26 eqeltrd ( ( 𝜑𝑖𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } )
110 75 109 eqeltrd ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } )
111 nfcv 𝑚 𝐴
112 nfrab1 𝑚 { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 }
113 6 112 nfcxfr 𝑚 𝑀
114 nfcv 𝑚
115 nfcv 𝑚 <
116 113 114 115 nfinf 𝑚 inf ( 𝑀 , ℝ , < )
117 111 116 nfmpt 𝑚 ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) )
118 7 117 nfcxfr 𝑚 𝑉
119 nfcv 𝑚 𝑖
120 118 119 nffv 𝑚 ( 𝑉𝑖 )
121 120 112 nfel 𝑚 ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 }
122 120 nfel1 𝑚 ( 𝑉𝑖 ) ∈ ℕ
123 nfcv 𝑚 (,)
124 nfcv 𝑚 +∞
125 120 123 124 nfov 𝑚 ( ( 𝑉𝑖 ) (,) +∞ )
126 nfv 𝑚 𝜒
127 125 126 nfralw 𝑚𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒
128 122 127 nfan 𝑚 ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 )
129 121 128 nfbi 𝑚 ( ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) )
130 eleq1 ( 𝑚 = ( 𝑉𝑖 ) → ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) )
131 eleq1 ( 𝑚 = ( 𝑉𝑖 ) → ( 𝑚 ∈ ℕ ↔ ( 𝑉𝑖 ) ∈ ℕ ) )
132 oveq1 ( 𝑚 = ( 𝑉𝑖 ) → ( 𝑚 (,) +∞ ) = ( ( 𝑉𝑖 ) (,) +∞ ) )
133 nfcv 𝑟 ( 𝑚 (,) +∞ )
134 nfcv 𝑟 𝐴
135 nfra1 𝑟𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒
136 nfcv 𝑟
137 135 136 nfrabw 𝑟 { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 }
138 6 137 nfcxfr 𝑟 𝑀
139 nfcv 𝑟
140 nfcv 𝑟 <
141 138 139 140 nfinf 𝑟 inf ( 𝑀 , ℝ , < )
142 134 141 nfmpt 𝑟 ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) )
143 7 142 nfcxfr 𝑟 𝑉
144 nfcv 𝑟 𝑖
145 143 144 nffv 𝑟 ( 𝑉𝑖 )
146 nfcv 𝑟 (,)
147 nfcv 𝑟 +∞
148 145 146 147 nfov 𝑟 ( ( 𝑉𝑖 ) (,) +∞ )
149 133 148 raleqf ( ( 𝑚 (,) +∞ ) = ( ( 𝑉𝑖 ) (,) +∞ ) → ( ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ↔ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) )
150 132 149 syl ( 𝑚 = ( 𝑉𝑖 ) → ( ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ↔ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) )
151 131 150 anbi12d ( 𝑚 = ( 𝑉𝑖 ) → ( ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) ↔ ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) ) )
152 130 151 bibi12d ( 𝑚 = ( 𝑉𝑖 ) → ( ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) ) ↔ ( ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) ) ) )
153 rabid ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) )
154 120 129 152 153 vtoclgf ( ( 𝑉𝑖 ) ∈ ℕ → ( ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) ) )
155 83 154 syl ( ( 𝜑𝑖𝐴 ) → ( ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) ) )
156 110 155 mpbid ( ( 𝜑𝑖𝐴 ) → ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) )
157 156 simprd ( ( 𝜑𝑖𝐴 ) → ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 )
158 157 r19.21bi ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) ) → 𝜒 )
159 108 158 syldan ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝜒 )
160 159 an32s ( ( ( 𝜑𝑟 ∈ ( 𝑁 (,) +∞ ) ) ∧ 𝑖𝐴 ) → 𝜒 )
161 160 ex ( ( 𝜑𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑖𝐴𝜒 ) )
162 73 161 ralrimi ( ( 𝜑𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ∀ 𝑖𝐴 𝜒 )
163 162 ex ( 𝜑 → ( 𝑟 ∈ ( 𝑁 (,) +∞ ) → ∀ 𝑖𝐴 𝜒 ) )
164 2 163 ralrimi ( 𝜑 → ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
165 164 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
166 oveq1 ( 𝑛 = 𝑁 → ( 𝑛 (,) +∞ ) = ( 𝑁 (,) +∞ ) )
167 nfcv 𝑟 ( 𝑛 (,) +∞ )
168 143 nfrn 𝑟 ran 𝑉
169 168 139 140 nfsup 𝑟 sup ( ran 𝑉 , ℝ , < )
170 8 169 nfcxfr 𝑟 𝑁
171 170 146 147 nfov 𝑟 ( 𝑁 (,) +∞ )
172 167 171 raleqf ( ( 𝑛 (,) +∞ ) = ( 𝑁 (,) +∞ ) → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ) )
173 166 172 syl ( 𝑛 = 𝑁 → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ) )
174 173 rspcev ( ( 𝑁 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
175 64 165 174 syl2anc ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
176 16 175 pm2.61dan ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )