Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem31.i |
⊢ Ⅎ 𝑖 𝜑 |
2 |
|
fourierdlem31.r |
⊢ Ⅎ 𝑟 𝜑 |
3 |
|
fourierdlem31.iv |
⊢ Ⅎ 𝑖 𝑉 |
4 |
|
fourierdlem31.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
5 |
|
fourierdlem31.exm |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝐴 ∃ 𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) |
6 |
|
fourierdlem31.m |
⊢ 𝑀 = { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } |
7 |
|
fourierdlem31.v |
⊢ 𝑉 = ( 𝑖 ∈ 𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) |
8 |
|
fourierdlem31.n |
⊢ 𝑁 = sup ( ran 𝑉 , ℝ , < ) |
9 |
|
1nn |
⊢ 1 ∈ ℕ |
10 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑖 ∈ 𝐴 𝜒 ) |
11 |
10
|
ralrimivw |
⊢ ( 𝐴 = ∅ → ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
12 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 (,) +∞ ) = ( 1 (,) +∞ ) ) |
13 |
12
|
raleqdv |
⊢ ( 𝑛 = 1 → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) ) |
14 |
13
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
15 |
9 11 14
|
sylancr |
⊢ ( 𝐴 = ∅ → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
17 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝑀 = { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) |
18 |
17
|
infeq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( 𝑀 , ℝ , < ) = inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ) |
19 |
|
ssrab2 |
⊢ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ℕ |
20 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
21 |
19 20
|
sseqtri |
⊢ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ( ℤ≥ ‘ 1 ) |
22 |
5
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ∃ 𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) |
23 |
|
rabn0 |
⊢ ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ ↔ ∃ 𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) |
24 |
22 23
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ ) |
25 |
|
infssuzcl |
⊢ ( ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) |
26 |
21 24 25
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) |
27 |
19 26
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ ℕ ) |
28 |
18 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ℕ ) |
29 |
1 7 28
|
rnmptssd |
⊢ ( 𝜑 → ran 𝑉 ⊆ ℕ ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ⊆ ℕ ) |
31 |
|
ltso |
⊢ < Or ℝ |
32 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → < Or ℝ ) |
33 |
|
mptfi |
⊢ ( 𝐴 ∈ Fin → ( 𝑖 ∈ 𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) ∈ Fin ) |
34 |
4 33
|
syl |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) ∈ Fin ) |
35 |
7 34
|
eqeltrid |
⊢ ( 𝜑 → 𝑉 ∈ Fin ) |
36 |
|
rnfi |
⊢ ( 𝑉 ∈ Fin → ran 𝑉 ∈ Fin ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → ran 𝑉 ∈ Fin ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ∈ Fin ) |
39 |
|
neqne |
⊢ ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ ) |
40 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑖 𝑖 ∈ 𝐴 ) |
41 |
39 40
|
sylib |
⊢ ( ¬ 𝐴 = ∅ → ∃ 𝑖 𝑖 ∈ 𝐴 ) |
42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑖 𝑖 ∈ 𝐴 ) |
43 |
|
nfv |
⊢ Ⅎ 𝑖 ¬ 𝐴 = ∅ |
44 |
1 43
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ ¬ 𝐴 = ∅ ) |
45 |
3
|
nfrn |
⊢ Ⅎ 𝑖 ran 𝑉 |
46 |
|
nfcv |
⊢ Ⅎ 𝑖 ∅ |
47 |
45 46
|
nfne |
⊢ Ⅎ 𝑖 ran 𝑉 ≠ ∅ |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝑖 ∈ 𝐴 ) |
49 |
7
|
elrnmpt1 |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ inf ( 𝑀 , ℝ , < ) ∈ ℕ ) → inf ( 𝑀 , ℝ , < ) ∈ ran 𝑉 ) |
50 |
48 28 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ran 𝑉 ) |
51 |
50
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ran 𝑉 ≠ ∅ ) |
52 |
51
|
ex |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐴 → ran 𝑉 ≠ ∅ ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ( 𝑖 ∈ 𝐴 → ran 𝑉 ≠ ∅ ) ) |
54 |
44 47 53
|
exlimd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ( ∃ 𝑖 𝑖 ∈ 𝐴 → ran 𝑉 ≠ ∅ ) ) |
55 |
42 54
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ≠ ∅ ) |
56 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
57 |
30 56
|
sstrdi |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ⊆ ℝ ) |
58 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( ran 𝑉 ∈ Fin ∧ ran 𝑉 ≠ ∅ ∧ ran 𝑉 ⊆ ℝ ) ) → sup ( ran 𝑉 , ℝ , < ) ∈ ran 𝑉 ) |
59 |
32 38 55 57 58
|
syl13anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( ran 𝑉 , ℝ , < ) ∈ ran 𝑉 ) |
60 |
30 59
|
sseldd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( ran 𝑉 , ℝ , < ) ∈ ℕ ) |
61 |
8 60
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝑁 ∈ ℕ ) |
62 |
|
nfcv |
⊢ Ⅎ 𝑖 ℝ |
63 |
|
nfcv |
⊢ Ⅎ 𝑖 < |
64 |
45 62 63
|
nfsup |
⊢ Ⅎ 𝑖 sup ( ran 𝑉 , ℝ , < ) |
65 |
8 64
|
nfcxfr |
⊢ Ⅎ 𝑖 𝑁 |
66 |
|
nfcv |
⊢ Ⅎ 𝑖 (,) |
67 |
|
nfcv |
⊢ Ⅎ 𝑖 +∞ |
68 |
65 66 67
|
nfov |
⊢ Ⅎ 𝑖 ( 𝑁 (,) +∞ ) |
69 |
68
|
nfcri |
⊢ Ⅎ 𝑖 𝑟 ∈ ( 𝑁 (,) +∞ ) |
70 |
1 69
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) |
71 |
7
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ inf ( 𝑀 , ℝ , < ) ∈ ℕ ) → ( 𝑉 ‘ 𝑖 ) = inf ( 𝑀 , ℝ , < ) ) |
72 |
48 28 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) = inf ( 𝑀 , ℝ , < ) ) |
73 |
28
|
nnxrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ℝ* ) |
74 |
72 73
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ* ) |
75 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ* ) |
76 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
77 |
76
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → +∞ ∈ ℝ* ) |
78 |
|
elioore |
⊢ ( 𝑟 ∈ ( 𝑁 (,) +∞ ) → 𝑟 ∈ ℝ ) |
79 |
78
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ℝ ) |
80 |
72 28
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ∈ ℕ ) |
81 |
80
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
82 |
81
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
83 |
|
ne0i |
⊢ ( 𝑖 ∈ 𝐴 → 𝐴 ≠ ∅ ) |
84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝐴 ≠ ∅ ) |
85 |
84
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ¬ 𝐴 = ∅ ) |
86 |
85 61
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝑁 ∈ ℕ ) |
87 |
86
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝑁 ∈ ℝ ) |
88 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 ∈ ℝ ) |
89 |
85 57
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ran 𝑉 ⊆ ℝ ) |
90 |
29 56
|
sstrdi |
⊢ ( 𝜑 → ran 𝑉 ⊆ ℝ ) |
91 |
|
fimaxre2 |
⊢ ( ( ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥 ) |
92 |
90 37 91
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥 ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥 ) |
94 |
72 50
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ∈ ran 𝑉 ) |
95 |
|
suprub |
⊢ ( ( ( ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥 ) ∧ ( 𝑉 ‘ 𝑖 ) ∈ ran 𝑉 ) → ( 𝑉 ‘ 𝑖 ) ≤ sup ( ran 𝑉 , ℝ , < ) ) |
96 |
89 51 93 94 95
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ≤ sup ( ran 𝑉 , ℝ , < ) ) |
97 |
96 8
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ≤ 𝑁 ) |
98 |
97
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉 ‘ 𝑖 ) ≤ 𝑁 ) |
99 |
88
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 ∈ ℝ* ) |
100 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ( 𝑁 (,) +∞ ) ) |
101 |
|
ioogtlb |
⊢ ( ( 𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 < 𝑟 ) |
102 |
99 77 100 101
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 < 𝑟 ) |
103 |
82 88 79 98 102
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉 ‘ 𝑖 ) < 𝑟 ) |
104 |
79
|
ltpnfd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 < +∞ ) |
105 |
75 77 79 103 104
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) ) |
106 |
18 26
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) |
107 |
72 106
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) |
108 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐴 |
109 |
|
nfrab1 |
⊢ Ⅎ 𝑚 { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } |
110 |
6 109
|
nfcxfr |
⊢ Ⅎ 𝑚 𝑀 |
111 |
|
nfcv |
⊢ Ⅎ 𝑚 ℝ |
112 |
|
nfcv |
⊢ Ⅎ 𝑚 < |
113 |
110 111 112
|
nfinf |
⊢ Ⅎ 𝑚 inf ( 𝑀 , ℝ , < ) |
114 |
108 113
|
nfmpt |
⊢ Ⅎ 𝑚 ( 𝑖 ∈ 𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) |
115 |
7 114
|
nfcxfr |
⊢ Ⅎ 𝑚 𝑉 |
116 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑖 |
117 |
115 116
|
nffv |
⊢ Ⅎ 𝑚 ( 𝑉 ‘ 𝑖 ) |
118 |
117 109
|
nfel |
⊢ Ⅎ 𝑚 ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } |
119 |
117
|
nfel1 |
⊢ Ⅎ 𝑚 ( 𝑉 ‘ 𝑖 ) ∈ ℕ |
120 |
|
nfcv |
⊢ Ⅎ 𝑚 (,) |
121 |
|
nfcv |
⊢ Ⅎ 𝑚 +∞ |
122 |
117 120 121
|
nfov |
⊢ Ⅎ 𝑚 ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) |
123 |
|
nfv |
⊢ Ⅎ 𝑚 𝜒 |
124 |
122 123
|
nfralw |
⊢ Ⅎ 𝑚 ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 |
125 |
119 124
|
nfan |
⊢ Ⅎ 𝑚 ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) |
126 |
118 125
|
nfbi |
⊢ Ⅎ 𝑚 ( ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) |
127 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) ) |
128 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( 𝑚 ∈ ℕ ↔ ( 𝑉 ‘ 𝑖 ) ∈ ℕ ) ) |
129 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( 𝑚 (,) +∞ ) = ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) ) |
130 |
|
nfcv |
⊢ Ⅎ 𝑟 ( 𝑚 (,) +∞ ) |
131 |
|
nfcv |
⊢ Ⅎ 𝑟 𝐴 |
132 |
|
nfra1 |
⊢ Ⅎ 𝑟 ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 |
133 |
|
nfcv |
⊢ Ⅎ 𝑟 ℕ |
134 |
132 133
|
nfrabw |
⊢ Ⅎ 𝑟 { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } |
135 |
6 134
|
nfcxfr |
⊢ Ⅎ 𝑟 𝑀 |
136 |
|
nfcv |
⊢ Ⅎ 𝑟 ℝ |
137 |
|
nfcv |
⊢ Ⅎ 𝑟 < |
138 |
135 136 137
|
nfinf |
⊢ Ⅎ 𝑟 inf ( 𝑀 , ℝ , < ) |
139 |
131 138
|
nfmpt |
⊢ Ⅎ 𝑟 ( 𝑖 ∈ 𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) |
140 |
7 139
|
nfcxfr |
⊢ Ⅎ 𝑟 𝑉 |
141 |
|
nfcv |
⊢ Ⅎ 𝑟 𝑖 |
142 |
140 141
|
nffv |
⊢ Ⅎ 𝑟 ( 𝑉 ‘ 𝑖 ) |
143 |
|
nfcv |
⊢ Ⅎ 𝑟 (,) |
144 |
|
nfcv |
⊢ Ⅎ 𝑟 +∞ |
145 |
142 143 144
|
nfov |
⊢ Ⅎ 𝑟 ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) |
146 |
130 145
|
raleqf |
⊢ ( ( 𝑚 (,) +∞ ) = ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) → ( ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ↔ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) |
147 |
129 146
|
syl |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ↔ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) |
148 |
128 147
|
anbi12d |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) ) |
149 |
127 148
|
bibi12d |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) ) ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) ) ) |
150 |
|
rabid |
⊢ ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) ) |
151 |
117 126 149 150
|
vtoclgf |
⊢ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ → ( ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) ) |
152 |
80 151
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) ) |
153 |
107 152
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) |
154 |
153
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) |
155 |
154
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) ) → 𝜒 ) |
156 |
105 155
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝜒 ) |
157 |
156
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) ∧ 𝑖 ∈ 𝐴 ) → 𝜒 ) |
158 |
157
|
ex |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑖 ∈ 𝐴 → 𝜒 ) ) |
159 |
70 158
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ∀ 𝑖 ∈ 𝐴 𝜒 ) |
160 |
159
|
ex |
⊢ ( 𝜑 → ( 𝑟 ∈ ( 𝑁 (,) +∞ ) → ∀ 𝑖 ∈ 𝐴 𝜒 ) ) |
161 |
2 160
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
162 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
163 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 (,) +∞ ) = ( 𝑁 (,) +∞ ) ) |
164 |
|
nfcv |
⊢ Ⅎ 𝑟 ( 𝑛 (,) +∞ ) |
165 |
140
|
nfrn |
⊢ Ⅎ 𝑟 ran 𝑉 |
166 |
165 136 137
|
nfsup |
⊢ Ⅎ 𝑟 sup ( ran 𝑉 , ℝ , < ) |
167 |
8 166
|
nfcxfr |
⊢ Ⅎ 𝑟 𝑁 |
168 |
167 143 144
|
nfov |
⊢ Ⅎ 𝑟 ( 𝑁 (,) +∞ ) |
169 |
164 168
|
raleqf |
⊢ ( ( 𝑛 (,) +∞ ) = ( 𝑁 (,) +∞ ) → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) ) |
170 |
163 169
|
syl |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) ) |
171 |
170
|
rspcev |
⊢ ( ( 𝑁 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
172 |
61 162 171
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
173 |
16 172
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |