| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem32.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | fourierdlem32.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fourierdlem32.altb | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 4 |  | fourierdlem32.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 5 |  | fourierdlem32.l | ⊢ ( 𝜑  →  𝑅  ∈  ( 𝐹  limℂ  𝐴 ) ) | 
						
							| 6 |  | fourierdlem32.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 7 |  | fourierdlem32.d | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 8 |  | fourierdlem32.cltd | ⊢ ( 𝜑  →  𝐶  <  𝐷 ) | 
						
							| 9 |  | fourierdlem32.ss | ⊢ ( 𝜑  →  ( 𝐶 (,) 𝐷 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 10 |  | fourierdlem32.y | ⊢ 𝑌  =  if ( 𝐶  =  𝐴 ,  𝑅 ,  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 11 |  | fourierdlem32.j | ⊢ 𝐽  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 12 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  𝑅  ∈  ( 𝐹  limℂ  𝐴 ) ) | 
						
							| 13 |  | iftrue | ⊢ ( 𝐶  =  𝐴  →  if ( 𝐶  =  𝐴 ,  𝑅 ,  ( 𝐹 ‘ 𝐶 ) )  =  𝑅 ) | 
						
							| 14 | 10 13 | eqtr2id | ⊢ ( 𝐶  =  𝐴  →  𝑅  =  𝑌 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  𝑅  =  𝑌 ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝐶  =  𝐴  →  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐶 )  =  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐴 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐶 )  =  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐴 ) ) | 
						
							| 18 |  | cncff | ⊢ ( 𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 19 | 4 18 | syl | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 21 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( 𝐶 (,) 𝐷 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 22 |  | ioosscn | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ℂ | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( 𝐴 (,) 𝐵 )  ⊆  ℂ ) | 
						
							| 24 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 25 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } ) ) | 
						
							| 26 | 6 | leidd | ⊢ ( 𝜑  →  𝐶  ≤  𝐶 ) | 
						
							| 27 | 7 | rexrd | ⊢ ( 𝜑  →  𝐷  ∈  ℝ* ) | 
						
							| 28 |  | elico2 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ* )  →  ( 𝐶  ∈  ( 𝐶 [,) 𝐷 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐶  ≤  𝐶  ∧  𝐶  <  𝐷 ) ) ) | 
						
							| 29 | 6 27 28 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐶 [,) 𝐷 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐶  ≤  𝐶  ∧  𝐶  <  𝐷 ) ) ) | 
						
							| 30 | 6 26 8 29 | mpbir3and | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐶 [,) 𝐷 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  𝐶  ∈  ( 𝐶 [,) 𝐷 ) ) | 
						
							| 32 | 24 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld )  ∈  Top | 
						
							| 33 |  | ovex | ⊢ ( 𝐴 [,) 𝐵 )  ∈  V | 
						
							| 34 | 33 | a1i | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( 𝐴 [,) 𝐵 )  ∈  V ) | 
						
							| 35 |  | resttop | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( 𝐴 [,) 𝐵 )  ∈  V )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 [,) 𝐵 ) )  ∈  Top ) | 
						
							| 36 | 32 34 35 | sylancr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 [,) 𝐵 ) )  ∈  Top ) | 
						
							| 37 | 11 36 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  𝐽  ∈  Top ) | 
						
							| 38 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 39 | 38 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  -∞  ∈  ℝ* ) | 
						
							| 40 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝐷  ∈  ℝ* ) | 
						
							| 41 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝑥  ∈  ( 𝐴 [,) 𝐷 ) ) | 
						
							| 42 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 43 |  | elico2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐷  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐴 [,) 𝐷 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  <  𝐷 ) ) ) | 
						
							| 44 | 42 40 43 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  ( 𝑥  ∈  ( 𝐴 [,) 𝐷 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  <  𝐷 ) ) ) | 
						
							| 45 | 41 44 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  <  𝐷 ) ) | 
						
							| 46 | 45 | simp1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 47 | 46 | mnfltd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  -∞  <  𝑥 ) | 
						
							| 48 | 45 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝑥  <  𝐷 ) | 
						
							| 49 | 39 40 46 47 48 | eliood | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝑥  ∈  ( -∞ (,) 𝐷 ) ) | 
						
							| 50 | 45 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝐴  ≤  𝑥 ) | 
						
							| 51 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 52 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 53 | 1 2 6 7 8 9 | fourierdlem10 | ⊢ ( 𝜑  →  ( 𝐴  ≤  𝐶  ∧  𝐷  ≤  𝐵 ) ) | 
						
							| 54 | 53 | simprd | ⊢ ( 𝜑  →  𝐷  ≤  𝐵 ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝐷  ≤  𝐵 ) | 
						
							| 56 | 46 51 52 48 55 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝑥  <  𝐵 ) | 
						
							| 57 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 59 |  | elico2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐴 [,) 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  <  𝐵 ) ) ) | 
						
							| 60 | 42 58 59 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  ( 𝑥  ∈  ( 𝐴 [,) 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  <  𝐵 ) ) ) | 
						
							| 61 | 46 50 56 60 | mpbir3and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝑥  ∈  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 62 | 49 61 | elind | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,) 𝐷 ) )  →  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 63 |  | elinel1 | ⊢ ( 𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) )  →  𝑥  ∈  ( -∞ (,) 𝐷 ) ) | 
						
							| 64 |  | elioore | ⊢ ( 𝑥  ∈  ( -∞ (,) 𝐷 )  →  𝑥  ∈  ℝ ) | 
						
							| 65 | 63 64 | syl | ⊢ ( 𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 67 |  | elinel2 | ⊢ ( 𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) )  →  𝑥  ∈  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  𝑥  ∈  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 69 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 70 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 71 | 69 70 59 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  ( 𝑥  ∈  ( 𝐴 [,) 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  <  𝐵 ) ) ) | 
						
							| 72 | 68 71 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  <  𝐵 ) ) | 
						
							| 73 | 72 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  𝐴  ≤  𝑥 ) | 
						
							| 74 | 63 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  𝑥  ∈  ( -∞ (,) 𝐷 ) ) | 
						
							| 75 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  𝐷  ∈  ℝ* ) | 
						
							| 76 |  | elioo2 | ⊢ ( ( -∞  ∈  ℝ*  ∧  𝐷  ∈  ℝ* )  →  ( 𝑥  ∈  ( -∞ (,) 𝐷 )  ↔  ( 𝑥  ∈  ℝ  ∧  -∞  <  𝑥  ∧  𝑥  <  𝐷 ) ) ) | 
						
							| 77 | 38 75 76 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  ( 𝑥  ∈  ( -∞ (,) 𝐷 )  ↔  ( 𝑥  ∈  ℝ  ∧  -∞  <  𝑥  ∧  𝑥  <  𝐷 ) ) ) | 
						
							| 78 | 74 77 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  ( 𝑥  ∈  ℝ  ∧  -∞  <  𝑥  ∧  𝑥  <  𝐷 ) ) | 
						
							| 79 | 78 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  𝑥  <  𝐷 ) | 
						
							| 80 | 69 75 43 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  ( 𝑥  ∈  ( 𝐴 [,) 𝐷 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  <  𝐷 ) ) ) | 
						
							| 81 | 66 73 79 80 | mpbir3and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) )  →  𝑥  ∈  ( 𝐴 [,) 𝐷 ) ) | 
						
							| 82 | 62 81 | impbida | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,) 𝐷 )  ↔  𝑥  ∈  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) ) ) | 
						
							| 83 | 82 | eqrdv | ⊢ ( 𝜑  →  ( 𝐴 [,) 𝐷 )  =  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 84 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 85 | 84 | a1i | ⊢ ( 𝜑  →  ( topGen ‘ ran  (,) )  ∈  Top ) | 
						
							| 86 | 33 | a1i | ⊢ ( 𝜑  →  ( 𝐴 [,) 𝐵 )  ∈  V ) | 
						
							| 87 |  | iooretop | ⊢ ( -∞ (,) 𝐷 )  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 88 | 87 | a1i | ⊢ ( 𝜑  →  ( -∞ (,) 𝐷 )  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 89 |  | elrestr | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  Top  ∧  ( 𝐴 [,) 𝐵 )  ∈  V  ∧  ( -∞ (,) 𝐷 )  ∈  ( topGen ‘ ran  (,) ) )  →  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 90 | 85 86 88 89 | syl3anc | ⊢ ( 𝜑  →  ( ( -∞ (,) 𝐷 )  ∩  ( 𝐴 [,) 𝐵 ) )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 91 | 83 90 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐴 [,) 𝐷 )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( 𝐴 [,) 𝐷 )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 93 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  𝐶  =  𝐴 ) | 
						
							| 94 | 93 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( 𝐶 [,) 𝐷 )  =  ( 𝐴 [,) 𝐷 ) ) | 
						
							| 95 | 11 | a1i | ⊢ ( 𝜑  →  𝐽  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 96 | 32 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ ℂfld )  ∈  Top ) | 
						
							| 97 |  | icossre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴 [,) 𝐵 )  ⊆  ℝ ) | 
						
							| 98 | 1 57 97 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,) 𝐵 )  ⊆  ℝ ) | 
						
							| 99 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 100 | 99 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 101 |  | restabs | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( 𝐴 [,) 𝐵 )  ⊆  ℝ  ∧  ℝ  ∈  V )  →  ( ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  ↾t  ( 𝐴 [,) 𝐵 ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 102 | 96 98 100 101 | syl3anc | ⊢ ( 𝜑  →  ( ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  ↾t  ( 𝐴 [,) 𝐵 ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 103 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 104 | 103 | eqcomi | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  =  ( topGen ‘ ran  (,) ) | 
						
							| 105 | 104 | oveq1i | ⊢ ( ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  ↾t  ( 𝐴 [,) 𝐵 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 106 | 105 | a1i | ⊢ ( 𝜑  →  ( ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  ↾t  ( 𝐴 [,) 𝐵 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 107 | 95 102 106 | 3eqtr2d | ⊢ ( 𝜑  →  𝐽  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  𝐽  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 109 | 92 94 108 | 3eltr4d | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( 𝐶 [,) 𝐷 )  ∈  𝐽 ) | 
						
							| 110 |  | isopn3i | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐶 [,) 𝐷 )  ∈  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) )  =  ( 𝐶 [,) 𝐷 ) ) | 
						
							| 111 | 37 109 110 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) )  =  ( 𝐶 [,) 𝐷 ) ) | 
						
							| 112 | 31 111 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  𝐶  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) ) ) | 
						
							| 113 |  | id | ⊢ ( 𝐶  =  𝐴  →  𝐶  =  𝐴 ) | 
						
							| 114 | 113 | eqcomd | ⊢ ( 𝐶  =  𝐴  →  𝐴  =  𝐶 ) | 
						
							| 115 | 114 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  𝐴  =  𝐶 ) | 
						
							| 116 |  | uncom | ⊢ ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } )  =  ( { 𝐴 }  ∪  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 117 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 118 |  | snunioo | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( { 𝐴 }  ∪  ( 𝐴 (,) 𝐵 ) )  =  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 119 | 117 57 3 118 | syl3anc | ⊢ ( 𝜑  →  ( { 𝐴 }  ∪  ( 𝐴 (,) 𝐵 ) )  =  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 120 | 116 119 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } )  =  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } )  =  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 122 | 121 | oveq2d | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 123 | 122 11 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } ) )  =  𝐽 ) | 
						
							| 124 | 123 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } ) ) )  =  ( int ‘ 𝐽 ) ) | 
						
							| 125 |  | uncom | ⊢ ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐴 } )  =  ( { 𝐴 }  ∪  ( 𝐶 (,) 𝐷 ) ) | 
						
							| 126 |  | sneq | ⊢ ( 𝐶  =  𝐴  →  { 𝐶 }  =  { 𝐴 } ) | 
						
							| 127 | 126 | eqcomd | ⊢ ( 𝐶  =  𝐴  →  { 𝐴 }  =  { 𝐶 } ) | 
						
							| 128 | 127 | uneq1d | ⊢ ( 𝐶  =  𝐴  →  ( { 𝐴 }  ∪  ( 𝐶 (,) 𝐷 ) )  =  ( { 𝐶 }  ∪  ( 𝐶 (,) 𝐷 ) ) ) | 
						
							| 129 | 125 128 | eqtrid | ⊢ ( 𝐶  =  𝐴  →  ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐴 } )  =  ( { 𝐶 }  ∪  ( 𝐶 (,) 𝐷 ) ) ) | 
						
							| 130 | 6 | rexrd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 131 |  | snunioo | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐷  ∈  ℝ*  ∧  𝐶  <  𝐷 )  →  ( { 𝐶 }  ∪  ( 𝐶 (,) 𝐷 ) )  =  ( 𝐶 [,) 𝐷 ) ) | 
						
							| 132 | 130 27 8 131 | syl3anc | ⊢ ( 𝜑  →  ( { 𝐶 }  ∪  ( 𝐶 (,) 𝐷 ) )  =  ( 𝐶 [,) 𝐷 ) ) | 
						
							| 133 | 129 132 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐴 } )  =  ( 𝐶 [,) 𝐷 ) ) | 
						
							| 134 | 124 133 | fveq12d | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } ) ) ) ‘ ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐴 } ) )  =  ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) ) ) | 
						
							| 135 | 112 115 134 | 3eltr4d | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  𝐴  ∈  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 } ) ) ) ‘ ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐴 } ) ) ) | 
						
							| 136 | 20 21 23 24 25 135 | limcres | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐴 )  =  ( 𝐹  limℂ  𝐴 ) ) | 
						
							| 137 | 17 136 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  ( 𝐹  limℂ  𝐴 )  =  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐶 ) ) | 
						
							| 138 | 12 15 137 | 3eltr3d | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐴 )  →  𝑌  ∈  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐶 ) ) | 
						
							| 139 |  | limcresi | ⊢ ( 𝐹  limℂ  𝐶 )  ⊆  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐶 ) | 
						
							| 140 |  | iffalse | ⊢ ( ¬  𝐶  =  𝐴  →  if ( 𝐶  =  𝐴 ,  𝑅 ,  ( 𝐹 ‘ 𝐶 ) )  =  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 141 | 10 140 | eqtrid | ⊢ ( ¬  𝐶  =  𝐴  →  𝑌  =  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 142 | 141 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝑌  =  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 143 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 144 | 143 | a1i | ⊢ ( 𝜑  →  ℂ  ⊆  ℂ ) | 
						
							| 145 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 146 |  | unicntop | ⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld ) | 
						
							| 147 | 146 | restid | ⊢ ( ( TopOpen ‘ ℂfld )  ∈  Top  →  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) ) | 
						
							| 148 | 32 147 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 149 | 148 | eqcomi | ⊢ ( TopOpen ‘ ℂfld )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) | 
						
							| 150 | 24 145 149 | cncfcn | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 151 | 22 144 150 | sylancr | ⊢ ( 𝜑  →  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 152 | 4 151 | eleqtrd | ⊢ ( 𝜑  →  𝐹  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 153 | 24 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 154 |  | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ( 𝐴 (,) 𝐵 )  ⊆  ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  ∈  ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 155 | 153 22 154 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  ∈  ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) | 
						
							| 156 |  | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  ∈  ( TopOn ‘ ( 𝐴 (,) 𝐵 ) )  ∧  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) )  →  ( 𝐹  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 157 | 155 153 156 | mp2an | ⊢ ( 𝐹  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) | 
						
							| 158 | 152 157 | sylib | ⊢ ( 𝜑  →  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) | 
						
							| 159 | 158 | simprd | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) | 
						
							| 160 | 159 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) | 
						
							| 161 | 117 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝐴  ∈  ℝ* ) | 
						
							| 162 | 57 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 163 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 164 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 165 | 53 | simpld | ⊢ ( 𝜑  →  𝐴  ≤  𝐶 ) | 
						
							| 166 | 165 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝐴  ≤  𝐶 ) | 
						
							| 167 | 113 | eqcoms | ⊢ ( 𝐴  =  𝐶  →  𝐶  =  𝐴 ) | 
						
							| 168 | 167 | necon3bi | ⊢ ( ¬  𝐶  =  𝐴  →  𝐴  ≠  𝐶 ) | 
						
							| 169 | 168 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝐴  ≠  𝐶 ) | 
						
							| 170 | 169 | necomd | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝐶  ≠  𝐴 ) | 
						
							| 171 | 164 163 166 170 | leneltd | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝐴  <  𝐶 ) | 
						
							| 172 | 6 7 2 8 54 | ltletrd | ⊢ ( 𝜑  →  𝐶  <  𝐵 ) | 
						
							| 173 | 172 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝐶  <  𝐵 ) | 
						
							| 174 | 161 162 163 171 173 | eliood | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 175 |  | fveq2 | ⊢ ( 𝑥  =  𝐶  →  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 )  =  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) | 
						
							| 176 | 175 | eleq2d | ⊢ ( 𝑥  =  𝐶  →  ( 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 )  ↔  𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) ) | 
						
							| 177 | 176 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 )  ∧  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) | 
						
							| 178 | 160 174 177 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) | 
						
							| 179 | 24 145 | cnplimc | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ⊆  ℂ  ∧  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 )  ↔  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ( 𝐹 ‘ 𝐶 )  ∈  ( 𝐹  limℂ  𝐶 ) ) ) ) | 
						
							| 180 | 22 174 179 | sylancr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  ( 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 )  ↔  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ( 𝐹 ‘ 𝐶 )  ∈  ( 𝐹  limℂ  𝐶 ) ) ) ) | 
						
							| 181 | 178 180 | mpbid | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ( 𝐹 ‘ 𝐶 )  ∈  ( 𝐹  limℂ  𝐶 ) ) ) | 
						
							| 182 | 181 | simprd | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  ( 𝐹 ‘ 𝐶 )  ∈  ( 𝐹  limℂ  𝐶 ) ) | 
						
							| 183 | 142 182 | eqeltrd | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝑌  ∈  ( 𝐹  limℂ  𝐶 ) ) | 
						
							| 184 | 139 183 | sselid | ⊢ ( ( 𝜑  ∧  ¬  𝐶  =  𝐴 )  →  𝑌  ∈  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐶 ) ) | 
						
							| 185 | 138 184 | pm2.61dan | ⊢ ( 𝜑  →  𝑌  ∈  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐶 ) ) |