Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem32.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
fourierdlem32.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
fourierdlem32.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
|
fourierdlem32.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
5 |
|
fourierdlem32.l |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) |
6 |
|
fourierdlem32.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
7 |
|
fourierdlem32.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
8 |
|
fourierdlem32.cltd |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
9 |
|
fourierdlem32.ss |
⊢ ( 𝜑 → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
10 |
|
fourierdlem32.y |
⊢ 𝑌 = if ( 𝐶 = 𝐴 , 𝑅 , ( 𝐹 ‘ 𝐶 ) ) |
11 |
|
fourierdlem32.j |
⊢ 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) |
12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) |
13 |
|
iftrue |
⊢ ( 𝐶 = 𝐴 → if ( 𝐶 = 𝐴 , 𝑅 , ( 𝐹 ‘ 𝐶 ) ) = 𝑅 ) |
14 |
10 13
|
eqtr2id |
⊢ ( 𝐶 = 𝐴 → 𝑅 = 𝑌 ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝑅 = 𝑌 ) |
16 |
|
oveq2 |
⊢ ( 𝐶 = 𝐴 → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐴 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐴 ) ) |
18 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
21 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
22 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
24 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
25 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) |
26 |
6
|
leidd |
⊢ ( 𝜑 → 𝐶 ≤ 𝐶 ) |
27 |
7
|
rexrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
28 |
|
elico2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐶 [,) 𝐷 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐶 ≤ 𝐶 ∧ 𝐶 < 𝐷 ) ) ) |
29 |
6 27 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐶 [,) 𝐷 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐶 ≤ 𝐶 ∧ 𝐶 < 𝐷 ) ) ) |
30 |
6 26 8 29
|
mpbir3and |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐶 [,) 𝐷 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐶 ∈ ( 𝐶 [,) 𝐷 ) ) |
32 |
24
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
33 |
|
ovex |
⊢ ( 𝐴 [,) 𝐵 ) ∈ V |
34 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐴 [,) 𝐵 ) ∈ V ) |
35 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,) 𝐵 ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ∈ Top ) |
36 |
32 34 35
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ∈ Top ) |
37 |
11 36
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐽 ∈ Top ) |
38 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → -∞ ∈ ℝ* ) |
40 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐷 ∈ ℝ* ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) |
42 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐴 ∈ ℝ ) |
43 |
|
elico2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷 ) ) ) |
44 |
42 40 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷 ) ) ) |
45 |
41 44
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷 ) ) |
46 |
45
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 ∈ ℝ ) |
47 |
46
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → -∞ < 𝑥 ) |
48 |
45
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 < 𝐷 ) |
49 |
39 40 46 47 48
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 ∈ ( -∞ (,) 𝐷 ) ) |
50 |
45
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐴 ≤ 𝑥 ) |
51 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐷 ∈ ℝ ) |
52 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐵 ∈ ℝ ) |
53 |
1 2 6 7 8 9
|
fourierdlem10 |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) |
54 |
53
|
simprd |
⊢ ( 𝜑 → 𝐷 ≤ 𝐵 ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐷 ≤ 𝐵 ) |
56 |
46 51 52 48 55
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 < 𝐵 ) |
57 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐵 ∈ ℝ* ) |
59 |
|
elico2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
60 |
42 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
61 |
46 50 56 60
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
62 |
49 61
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) |
63 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ( -∞ (,) 𝐷 ) ) |
64 |
|
elioore |
⊢ ( 𝑥 ∈ ( -∞ (,) 𝐷 ) → 𝑥 ∈ ℝ ) |
65 |
63 64
|
syl |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ℝ ) |
66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ℝ ) |
67 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
69 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐴 ∈ ℝ ) |
70 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐵 ∈ ℝ* ) |
71 |
69 70 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
72 |
68 71
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) |
73 |
72
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐴 ≤ 𝑥 ) |
74 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ( -∞ (,) 𝐷 ) ) |
75 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐷 ∈ ℝ* ) |
76 |
|
elioo2 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) → ( 𝑥 ∈ ( -∞ (,) 𝐷 ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐷 ) ) ) |
77 |
38 75 76
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → ( 𝑥 ∈ ( -∞ (,) 𝐷 ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐷 ) ) ) |
78 |
74 77
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐷 ) ) |
79 |
78
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 < 𝐷 ) |
80 |
69 75 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷 ) ) ) |
81 |
66 73 79 80
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) |
82 |
62 81
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ↔ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) ) |
83 |
82
|
eqrdv |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐷 ) = ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) |
84 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
85 |
84
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
86 |
33
|
a1i |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ∈ V ) |
87 |
|
iooretop |
⊢ ( -∞ (,) 𝐷 ) ∈ ( topGen ‘ ran (,) ) |
88 |
87
|
a1i |
⊢ ( 𝜑 → ( -∞ (,) 𝐷 ) ∈ ( topGen ‘ ran (,) ) ) |
89 |
|
elrestr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,) 𝐵 ) ∈ V ∧ ( -∞ (,) 𝐷 ) ∈ ( topGen ‘ ran (,) ) ) → ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
90 |
85 86 88 89
|
syl3anc |
⊢ ( 𝜑 → ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
91 |
83 90
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐷 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐴 [,) 𝐷 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
93 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐶 = 𝐴 ) |
94 |
93
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐶 [,) 𝐷 ) = ( 𝐴 [,) 𝐷 ) ) |
95 |
11
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
96 |
32
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
97 |
|
icossre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ⊆ ℝ ) |
98 |
1 57 97
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ⊆ ℝ ) |
99 |
|
reex |
⊢ ℝ ∈ V |
100 |
99
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
101 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,) 𝐵 ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
102 |
96 98 100 101
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
103 |
24
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
104 |
103
|
eqcomi |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) ) |
105 |
104
|
oveq1i |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,) 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) |
106 |
105
|
a1i |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,) 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
107 |
95 102 106
|
3eqtr2d |
⊢ ( 𝜑 → 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
109 |
92 94 108
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐶 [,) 𝐷 ) ∈ 𝐽 ) |
110 |
|
isopn3i |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐶 [,) 𝐷 ) ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) ) = ( 𝐶 [,) 𝐷 ) ) |
111 |
37 109 110
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) ) = ( 𝐶 [,) 𝐷 ) ) |
112 |
31 111
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐶 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) ) ) |
113 |
|
id |
⊢ ( 𝐶 = 𝐴 → 𝐶 = 𝐴 ) |
114 |
113
|
eqcomd |
⊢ ( 𝐶 = 𝐴 → 𝐴 = 𝐶 ) |
115 |
114
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐴 = 𝐶 ) |
116 |
|
uncom |
⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) |
117 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
118 |
|
snunioo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
119 |
117 57 3 118
|
syl3anc |
⊢ ( 𝜑 → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
120 |
116 119
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) |
121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) |
122 |
121
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
123 |
122 11
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) = 𝐽 ) |
124 |
123
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) = ( int ‘ 𝐽 ) ) |
125 |
|
uncom |
⊢ ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐴 } ) = ( { 𝐴 } ∪ ( 𝐶 (,) 𝐷 ) ) |
126 |
|
sneq |
⊢ ( 𝐶 = 𝐴 → { 𝐶 } = { 𝐴 } ) |
127 |
126
|
eqcomd |
⊢ ( 𝐶 = 𝐴 → { 𝐴 } = { 𝐶 } ) |
128 |
127
|
uneq1d |
⊢ ( 𝐶 = 𝐴 → ( { 𝐴 } ∪ ( 𝐶 (,) 𝐷 ) ) = ( { 𝐶 } ∪ ( 𝐶 (,) 𝐷 ) ) ) |
129 |
125 128
|
syl5eq |
⊢ ( 𝐶 = 𝐴 → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐴 } ) = ( { 𝐶 } ∪ ( 𝐶 (,) 𝐷 ) ) ) |
130 |
6
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
131 |
|
snunioo |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) → ( { 𝐶 } ∪ ( 𝐶 (,) 𝐷 ) ) = ( 𝐶 [,) 𝐷 ) ) |
132 |
130 27 8 131
|
syl3anc |
⊢ ( 𝜑 → ( { 𝐶 } ∪ ( 𝐶 (,) 𝐷 ) ) = ( 𝐶 [,) 𝐷 ) ) |
133 |
129 132
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐴 } ) = ( 𝐶 [,) 𝐷 ) ) |
134 |
124 133
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) ‘ ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐴 } ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) ) ) |
135 |
112 115 134
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) ‘ ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐴 } ) ) ) |
136 |
20 21 23 24 25 135
|
limcres |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐴 ) = ( 𝐹 limℂ 𝐴 ) ) |
137 |
17 136
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐹 limℂ 𝐴 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) ) |
138 |
12 15 137
|
3eltr3d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) ) |
139 |
|
limcresi |
⊢ ( 𝐹 limℂ 𝐶 ) ⊆ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) |
140 |
|
iffalse |
⊢ ( ¬ 𝐶 = 𝐴 → if ( 𝐶 = 𝐴 , 𝑅 , ( 𝐹 ‘ 𝐶 ) ) = ( 𝐹 ‘ 𝐶 ) ) |
141 |
10 140
|
syl5eq |
⊢ ( ¬ 𝐶 = 𝐴 → 𝑌 = ( 𝐹 ‘ 𝐶 ) ) |
142 |
141
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝑌 = ( 𝐹 ‘ 𝐶 ) ) |
143 |
|
ssid |
⊢ ℂ ⊆ ℂ |
144 |
143
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
145 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) |
146 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
147 |
146
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
148 |
32 147
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
149 |
148
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
150 |
24 145 149
|
cncfcn |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
151 |
22 144 150
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
152 |
4 151
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
153 |
24
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
154 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) |
155 |
153 22 154
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) |
156 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
157 |
155 153 156
|
mp2an |
⊢ ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
158 |
152 157
|
sylib |
⊢ ( 𝜑 → ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
159 |
158
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
161 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐴 ∈ ℝ* ) |
162 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐵 ∈ ℝ* ) |
163 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐶 ∈ ℝ ) |
164 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐴 ∈ ℝ ) |
165 |
53
|
simpld |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
166 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐴 ≤ 𝐶 ) |
167 |
113
|
eqcoms |
⊢ ( 𝐴 = 𝐶 → 𝐶 = 𝐴 ) |
168 |
167
|
necon3bi |
⊢ ( ¬ 𝐶 = 𝐴 → 𝐴 ≠ 𝐶 ) |
169 |
168
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐴 ≠ 𝐶 ) |
170 |
169
|
necomd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐶 ≠ 𝐴 ) |
171 |
164 163 166 170
|
leneltd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐴 < 𝐶 ) |
172 |
6 7 2 8 54
|
ltletrd |
⊢ ( 𝜑 → 𝐶 < 𝐵 ) |
173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐶 < 𝐵 ) |
174 |
161 162 163 171 173
|
eliood |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
175 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) |
176 |
175
|
eleq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) ) |
177 |
176
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ∧ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) |
178 |
160 174 177
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) |
179 |
24 145
|
cnplimc |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 limℂ 𝐶 ) ) ) ) |
180 |
22 174 179
|
sylancr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 limℂ 𝐶 ) ) ) ) |
181 |
178 180
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 limℂ 𝐶 ) ) ) |
182 |
181
|
simprd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 limℂ 𝐶 ) ) |
183 |
142 182
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝑌 ∈ ( 𝐹 limℂ 𝐶 ) ) |
184 |
139 183
|
sselid |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) ) |
185 |
138 184
|
pm2.61dan |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) ) |