Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem33.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
fourierdlem33.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
fourierdlem33.3 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
|
fourierdlem33.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
5 |
|
fourierdlem33.5 |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) |
6 |
|
fourierdlem33.6 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
7 |
|
fourierdlem33.7 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
8 |
|
fourierdlem33.8 |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
9 |
|
fourierdlem33.ss |
⊢ ( 𝜑 → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
10 |
|
fourierdlem33.y |
⊢ 𝑌 = if ( 𝐷 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐷 ) ) |
11 |
|
fourierdlem33.10 |
⊢ 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) |
13 |
|
iftrue |
⊢ ( 𝐷 = 𝐵 → if ( 𝐷 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐷 ) ) = 𝐿 ) |
14 |
10 13
|
eqtr2id |
⊢ ( 𝐷 = 𝐵 → 𝐿 = 𝑌 ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐿 = 𝑌 ) |
16 |
|
oveq2 |
⊢ ( 𝐷 = 𝐵 → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐵 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐵 ) ) |
18 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
21 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
22 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
24 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
25 |
7
|
leidd |
⊢ ( 𝜑 → 𝐷 ≤ 𝐷 ) |
26 |
6
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
27 |
|
elioc2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ ) → ( 𝐷 ∈ ( 𝐶 (,] 𝐷 ) ↔ ( 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ∧ 𝐷 ≤ 𝐷 ) ) ) |
28 |
26 7 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ∈ ( 𝐶 (,] 𝐷 ) ↔ ( 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ∧ 𝐷 ≤ 𝐷 ) ) ) |
29 |
7 8 25 28
|
mpbir3and |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 (,] 𝐷 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐷 ∈ ( 𝐶 (,] 𝐷 ) ) |
31 |
|
eqcom |
⊢ ( 𝐷 = 𝐵 ↔ 𝐵 = 𝐷 ) |
32 |
31
|
biimpi |
⊢ ( 𝐷 = 𝐵 → 𝐵 = 𝐷 ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐵 = 𝐷 ) |
34 |
24
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
35 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
36 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
37 |
|
ioounsn |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
38 |
35 36 3 37
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
39 |
|
ovex |
⊢ ( 𝐴 (,] 𝐵 ) ∈ V |
40 |
39
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ∈ V ) |
41 |
38 40
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ V ) |
42 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ Top ) |
43 |
34 41 42
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ Top ) |
44 |
11 43
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐽 ∈ Top ) |
46 |
|
oveq2 |
⊢ ( 𝐷 = 𝐵 → ( 𝐶 (,] 𝐷 ) = ( 𝐶 (,] 𝐵 ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,] 𝐷 ) = ( 𝐶 (,] 𝐵 ) ) |
48 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
49 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
50 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → +∞ ∈ ℝ* ) |
51 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) |
52 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
53 |
|
elioc2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
54 |
48 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
55 |
51 54
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
56 |
55
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
57 |
55
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐶 < 𝑥 ) |
58 |
56
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 < +∞ ) |
59 |
48 50 56 57 58
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐶 (,) +∞ ) ) |
60 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
61 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
62 |
1 2 6 7 8 9
|
fourierdlem10 |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) |
63 |
62
|
simpld |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
65 |
60 61 56 64 57
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐴 < 𝑥 ) |
66 |
55
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
67 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
68 |
|
elioc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
69 |
67 52 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
70 |
56 65 66 69
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
71 |
59 70
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) |
72 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐶 (,) +∞ ) ) |
73 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝐶 (,) +∞ ) → 𝑥 ∈ ℝ ) |
74 |
72 73
|
syl |
⊢ ( 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ℝ ) |
76 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐶 ∈ ℝ* ) |
77 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → +∞ ∈ ℝ* ) |
78 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐶 (,) +∞ ) ) |
79 |
|
ioogtlb |
⊢ ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ ( 𝐶 (,) +∞ ) ) → 𝐶 < 𝑥 ) |
80 |
76 77 78 79
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐶 < 𝑥 ) |
81 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
83 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐴 ∈ ℝ* ) |
84 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐵 ∈ ℝ ) |
85 |
83 84 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
86 |
82 85
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
87 |
86
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ≤ 𝐵 ) |
88 |
76 84 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
89 |
75 80 87 88
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) |
90 |
71 89
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) ) |
91 |
90
|
eqrdv |
⊢ ( 𝜑 → ( 𝐶 (,] 𝐵 ) = ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) |
92 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
93 |
92
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
94 |
|
iooretop |
⊢ ( 𝐶 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
95 |
94
|
a1i |
⊢ ( 𝜑 → ( 𝐶 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) |
96 |
|
elrestr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 (,] 𝐵 ) ∈ V ∧ ( 𝐶 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) → ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
97 |
93 40 95 96
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
98 |
91 97
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐶 (,] 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,] 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
100 |
47 99
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,] 𝐷 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
101 |
11
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
102 |
38
|
oveq2d |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
103 |
34
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
104 |
|
iocssre |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
105 |
35 2 104
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
106 |
|
reex |
⊢ ℝ ∈ V |
107 |
106
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
108 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 (,] 𝐵 ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 (,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
109 |
103 105 107 108
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 (,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
110 |
24
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
111 |
110
|
eqcomi |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) ) |
112 |
111
|
oveq1i |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 (,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) |
113 |
109 112
|
eqtr3di |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
114 |
101 102 113
|
3eqtrrd |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) = 𝐽 ) |
115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) = 𝐽 ) |
116 |
100 115
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,] 𝐷 ) ∈ 𝐽 ) |
117 |
|
isopn3i |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐶 (,] 𝐷 ) ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) ) = ( 𝐶 (,] 𝐷 ) ) |
118 |
45 116 117
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) ) = ( 𝐶 (,] 𝐷 ) ) |
119 |
30 33 118
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐵 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) ) ) |
120 |
|
sneq |
⊢ ( 𝐷 = 𝐵 → { 𝐷 } = { 𝐵 } ) |
121 |
120
|
eqcomd |
⊢ ( 𝐷 = 𝐵 → { 𝐵 } = { 𝐷 } ) |
122 |
121
|
uneq2d |
⊢ ( 𝐷 = 𝐵 → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐵 } ) = ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐷 } ) ) |
123 |
122
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐵 } ) = ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐷 } ) ) |
124 |
7
|
rexrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
125 |
|
ioounsn |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐷 } ) = ( 𝐶 (,] 𝐷 ) ) |
126 |
26 124 8 125
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐷 } ) = ( 𝐶 (,] 𝐷 ) ) |
127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐷 } ) = ( 𝐶 (,] 𝐷 ) ) |
128 |
123 127
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,] 𝐷 ) = ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐵 } ) ) |
129 |
128
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) ) = ( ( int ‘ 𝐽 ) ‘ ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐵 } ) ) ) |
130 |
119 129
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐵 ∈ ( ( int ‘ 𝐽 ) ‘ ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐵 } ) ) ) |
131 |
20 21 23 24 11 130
|
limcres |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |
132 |
17 131
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) ) |
133 |
12 15 132
|
3eltr3d |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) ) |
134 |
|
limcresi |
⊢ ( 𝐹 limℂ 𝐷 ) ⊆ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) |
135 |
|
iffalse |
⊢ ( ¬ 𝐷 = 𝐵 → if ( 𝐷 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐷 ) ) = ( 𝐹 ‘ 𝐷 ) ) |
136 |
10 135
|
syl5eq |
⊢ ( ¬ 𝐷 = 𝐵 → 𝑌 = ( 𝐹 ‘ 𝐷 ) ) |
137 |
136
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝑌 = ( 𝐹 ‘ 𝐷 ) ) |
138 |
|
ssid |
⊢ ℂ ⊆ ℂ |
139 |
138
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
140 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) |
141 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
142 |
141
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
143 |
34 142
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
144 |
143
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
145 |
24 140 144
|
cncfcn |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
146 |
22 139 145
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
147 |
4 146
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
148 |
24
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
149 |
22
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
150 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) |
151 |
148 149 150
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) |
152 |
148
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
153 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
154 |
151 152 153
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
155 |
147 154
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
156 |
155
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
157 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
158 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐴 ∈ ℝ* ) |
159 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
160 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐷 ∈ ℝ ) |
161 |
1 6 7 63 8
|
lelttrd |
⊢ ( 𝜑 → 𝐴 < 𝐷 ) |
162 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐴 < 𝐷 ) |
163 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐵 ∈ ℝ ) |
164 |
62
|
simprd |
⊢ ( 𝜑 → 𝐷 ≤ 𝐵 ) |
165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐷 ≤ 𝐵 ) |
166 |
|
neqne |
⊢ ( ¬ 𝐷 = 𝐵 → 𝐷 ≠ 𝐵 ) |
167 |
166
|
necomd |
⊢ ( ¬ 𝐷 = 𝐵 → 𝐵 ≠ 𝐷 ) |
168 |
167
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐵 ≠ 𝐷 ) |
169 |
160 163 165 168
|
leneltd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐷 < 𝐵 ) |
170 |
158 159 160 162 169
|
eliood |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) |
171 |
|
fveq2 |
⊢ ( 𝑥 = 𝐷 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) |
172 |
171
|
eleq2d |
⊢ ( 𝑥 = 𝐷 → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) ) |
173 |
172
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) |
174 |
157 170 173
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) |
175 |
24 140
|
cnplimc |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 limℂ 𝐷 ) ) ) ) |
176 |
22 170 175
|
sylancr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 limℂ 𝐷 ) ) ) ) |
177 |
174 176
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 limℂ 𝐷 ) ) ) |
178 |
177
|
simprd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 limℂ 𝐷 ) ) |
179 |
137 178
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝑌 ∈ ( 𝐹 limℂ 𝐷 ) ) |
180 |
134 179
|
sselid |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) ) |
181 |
133 180
|
pm2.61dan |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) ) |