| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem33.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | fourierdlem33.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fourierdlem33.3 | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 4 |  | fourierdlem33.4 | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 5 |  | fourierdlem33.5 | ⊢ ( 𝜑  →  𝐿  ∈  ( 𝐹  limℂ  𝐵 ) ) | 
						
							| 6 |  | fourierdlem33.6 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 7 |  | fourierdlem33.7 | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 8 |  | fourierdlem33.8 | ⊢ ( 𝜑  →  𝐶  <  𝐷 ) | 
						
							| 9 |  | fourierdlem33.ss | ⊢ ( 𝜑  →  ( 𝐶 (,) 𝐷 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 10 |  | fourierdlem33.y | ⊢ 𝑌  =  if ( 𝐷  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝐷 ) ) | 
						
							| 11 |  | fourierdlem33.10 | ⊢ 𝐽  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } ) ) | 
						
							| 12 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  𝐿  ∈  ( 𝐹  limℂ  𝐵 ) ) | 
						
							| 13 |  | iftrue | ⊢ ( 𝐷  =  𝐵  →  if ( 𝐷  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝐷 ) )  =  𝐿 ) | 
						
							| 14 | 10 13 | eqtr2id | ⊢ ( 𝐷  =  𝐵  →  𝐿  =  𝑌 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  𝐿  =  𝑌 ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝐷  =  𝐵  →  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐷 )  =  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐵 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐷 )  =  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐵 ) ) | 
						
							| 18 |  | cncff | ⊢ ( 𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 19 | 4 18 | syl | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 21 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( 𝐶 (,) 𝐷 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 22 |  | ioosscn | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ℂ | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( 𝐴 (,) 𝐵 )  ⊆  ℂ ) | 
						
							| 24 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 25 | 7 | leidd | ⊢ ( 𝜑  →  𝐷  ≤  𝐷 ) | 
						
							| 26 | 6 | rexrd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 27 |  | elioc2 | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐷  ∈  ℝ )  →  ( 𝐷  ∈  ( 𝐶 (,] 𝐷 )  ↔  ( 𝐷  ∈  ℝ  ∧  𝐶  <  𝐷  ∧  𝐷  ≤  𝐷 ) ) ) | 
						
							| 28 | 26 7 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝐷  ∈  ( 𝐶 (,] 𝐷 )  ↔  ( 𝐷  ∈  ℝ  ∧  𝐶  <  𝐷  ∧  𝐷  ≤  𝐷 ) ) ) | 
						
							| 29 | 7 8 25 28 | mpbir3and | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐶 (,] 𝐷 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  𝐷  ∈  ( 𝐶 (,] 𝐷 ) ) | 
						
							| 31 |  | eqcom | ⊢ ( 𝐷  =  𝐵  ↔  𝐵  =  𝐷 ) | 
						
							| 32 | 31 | biimpi | ⊢ ( 𝐷  =  𝐵  →  𝐵  =  𝐷 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  𝐵  =  𝐷 ) | 
						
							| 34 | 24 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld )  ∈  Top | 
						
							| 35 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 36 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 37 |  | ioounsn | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  =  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 38 | 35 36 3 37 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  =  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 39 |  | ovex | ⊢ ( 𝐴 (,] 𝐵 )  ∈  V | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,] 𝐵 )  ∈  V ) | 
						
							| 41 | 38 40 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∈  V ) | 
						
							| 42 |  | resttop | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∈  V )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } ) )  ∈  Top ) | 
						
							| 43 | 34 41 42 | sylancr | ⊢ ( 𝜑  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } ) )  ∈  Top ) | 
						
							| 44 | 11 43 | eqeltrid | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  𝐽  ∈  Top ) | 
						
							| 46 |  | oveq2 | ⊢ ( 𝐷  =  𝐵  →  ( 𝐶 (,] 𝐷 )  =  ( 𝐶 (,] 𝐵 ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( 𝐶 (,] 𝐷 )  =  ( 𝐶 (,] 𝐵 ) ) | 
						
							| 48 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝐶  ∈  ℝ* ) | 
						
							| 49 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 50 | 49 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  +∞  ∈  ℝ* ) | 
						
							| 51 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝑥  ∈  ( 𝐶 (,] 𝐵 ) ) | 
						
							| 52 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 53 |  | elioc2 | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐶 (,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐶  <  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 54 | 48 52 53 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  ( 𝑥  ∈  ( 𝐶 (,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐶  <  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 55 | 51 54 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐶  <  𝑥  ∧  𝑥  ≤  𝐵 ) ) | 
						
							| 56 | 55 | simp1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 57 | 55 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝐶  <  𝑥 ) | 
						
							| 58 | 56 | ltpnfd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝑥  <  +∞ ) | 
						
							| 59 | 48 50 56 57 58 | eliood | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝑥  ∈  ( 𝐶 (,) +∞ ) ) | 
						
							| 60 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 61 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 62 | 1 2 6 7 8 9 | fourierdlem10 | ⊢ ( 𝜑  →  ( 𝐴  ≤  𝐶  ∧  𝐷  ≤  𝐵 ) ) | 
						
							| 63 | 62 | simpld | ⊢ ( 𝜑  →  𝐴  ≤  𝐶 ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝐴  ≤  𝐶 ) | 
						
							| 65 | 60 61 56 64 57 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝐴  <  𝑥 ) | 
						
							| 66 | 55 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝑥  ≤  𝐵 ) | 
						
							| 67 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 68 |  | elioc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 (,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 69 | 67 52 68 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  ( 𝑥  ∈  ( 𝐴 (,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 70 | 56 65 66 69 | mpbir3and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝑥  ∈  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 71 | 59 70 | elind | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶 (,] 𝐵 ) )  →  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 72 |  | elinel1 | ⊢ ( 𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) )  →  𝑥  ∈  ( 𝐶 (,) +∞ ) ) | 
						
							| 73 |  | elioore | ⊢ ( 𝑥  ∈  ( 𝐶 (,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 74 | 72 73 | syl | ⊢ ( 𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 76 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  𝐶  ∈  ℝ* ) | 
						
							| 77 | 49 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  +∞  ∈  ℝ* ) | 
						
							| 78 | 72 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  𝑥  ∈  ( 𝐶 (,) +∞ ) ) | 
						
							| 79 |  | ioogtlb | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝑥  ∈  ( 𝐶 (,) +∞ ) )  →  𝐶  <  𝑥 ) | 
						
							| 80 | 76 77 78 79 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  𝐶  <  𝑥 ) | 
						
							| 81 |  | elinel2 | ⊢ ( 𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) )  →  𝑥  ∈  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  𝑥  ∈  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 83 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 84 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 85 | 83 84 68 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  ( 𝑥  ∈  ( 𝐴 (,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 86 | 82 85 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐵 ) ) | 
						
							| 87 | 86 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  𝑥  ≤  𝐵 ) | 
						
							| 88 | 76 84 53 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  ( 𝑥  ∈  ( 𝐶 (,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐶  <  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 89 | 75 80 87 88 | mpbir3and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) )  →  𝑥  ∈  ( 𝐶 (,] 𝐵 ) ) | 
						
							| 90 | 71 89 | impbida | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐶 (,] 𝐵 )  ↔  𝑥  ∈  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) ) ) | 
						
							| 91 | 90 | eqrdv | ⊢ ( 𝜑  →  ( 𝐶 (,] 𝐵 )  =  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 92 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 93 | 92 | a1i | ⊢ ( 𝜑  →  ( topGen ‘ ran  (,) )  ∈  Top ) | 
						
							| 94 |  | iooretop | ⊢ ( 𝐶 (,) +∞ )  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 95 | 94 | a1i | ⊢ ( 𝜑  →  ( 𝐶 (,) +∞ )  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 96 |  | elrestr | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  Top  ∧  ( 𝐴 (,] 𝐵 )  ∈  V  ∧  ( 𝐶 (,) +∞ )  ∈  ( topGen ‘ ran  (,) ) )  →  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 97 | 93 40 95 96 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐶 (,) +∞ )  ∩  ( 𝐴 (,] 𝐵 ) )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 98 | 91 97 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐶 (,] 𝐵 )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( 𝐶 (,] 𝐵 )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 100 | 47 99 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( 𝐶 (,] 𝐷 )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 101 | 11 | a1i | ⊢ ( 𝜑  →  𝐽  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } ) ) ) | 
						
							| 102 | 38 | oveq2d | ⊢ ( 𝜑  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 103 | 34 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ ℂfld )  ∈  Top ) | 
						
							| 104 |  | iocssre | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 (,] 𝐵 )  ⊆  ℝ ) | 
						
							| 105 | 35 2 104 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 (,] 𝐵 )  ⊆  ℝ ) | 
						
							| 106 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 107 | 106 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 108 |  | restabs | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( 𝐴 (,] 𝐵 )  ⊆  ℝ  ∧  ℝ  ∈  V )  →  ( ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  ↾t  ( 𝐴 (,] 𝐵 ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 109 | 103 105 107 108 | syl3anc | ⊢ ( 𝜑  →  ( ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  ↾t  ( 𝐴 (,] 𝐵 ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 110 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 111 | 110 | eqcomi | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  =  ( topGen ‘ ran  (,) ) | 
						
							| 112 | 111 | oveq1i | ⊢ ( ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  ↾t  ( 𝐴 (,] 𝐵 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 113 | 109 112 | eqtr3di | ⊢ ( 𝜑  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 114 | 101 102 113 | 3eqtrrd | ⊢ ( 𝜑  →  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 (,] 𝐵 ) )  =  𝐽 ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 (,] 𝐵 ) )  =  𝐽 ) | 
						
							| 116 | 100 115 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( 𝐶 (,] 𝐷 )  ∈  𝐽 ) | 
						
							| 117 |  | isopn3i | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐶 (,] 𝐷 )  ∈  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) )  =  ( 𝐶 (,] 𝐷 ) ) | 
						
							| 118 | 45 116 117 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) )  =  ( 𝐶 (,] 𝐷 ) ) | 
						
							| 119 | 30 33 118 | 3eltr4d | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  𝐵  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) ) ) | 
						
							| 120 |  | sneq | ⊢ ( 𝐷  =  𝐵  →  { 𝐷 }  =  { 𝐵 } ) | 
						
							| 121 | 120 | eqcomd | ⊢ ( 𝐷  =  𝐵  →  { 𝐵 }  =  { 𝐷 } ) | 
						
							| 122 | 121 | uneq2d | ⊢ ( 𝐷  =  𝐵  →  ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐵 } )  =  ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐷 } ) ) | 
						
							| 123 | 122 | adantl | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐵 } )  =  ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐷 } ) ) | 
						
							| 124 | 7 | rexrd | ⊢ ( 𝜑  →  𝐷  ∈  ℝ* ) | 
						
							| 125 |  | ioounsn | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐷  ∈  ℝ*  ∧  𝐶  <  𝐷 )  →  ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐷 } )  =  ( 𝐶 (,] 𝐷 ) ) | 
						
							| 126 | 26 124 8 125 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐷 } )  =  ( 𝐶 (,] 𝐷 ) ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐷 } )  =  ( 𝐶 (,] 𝐷 ) ) | 
						
							| 128 | 123 127 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( 𝐶 (,] 𝐷 )  =  ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐵 } ) ) | 
						
							| 129 | 128 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) )  =  ( ( int ‘ 𝐽 ) ‘ ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐵 } ) ) ) | 
						
							| 130 | 119 129 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  𝐵  ∈  ( ( int ‘ 𝐽 ) ‘ ( ( 𝐶 (,) 𝐷 )  ∪  { 𝐵 } ) ) ) | 
						
							| 131 | 20 21 23 24 11 130 | limcres | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐵 )  =  ( 𝐹  limℂ  𝐵 ) ) | 
						
							| 132 | 17 131 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  ( 𝐹  limℂ  𝐵 )  =  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐷 ) ) | 
						
							| 133 | 12 15 132 | 3eltr3d | ⊢ ( ( 𝜑  ∧  𝐷  =  𝐵 )  →  𝑌  ∈  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐷 ) ) | 
						
							| 134 |  | limcresi | ⊢ ( 𝐹  limℂ  𝐷 )  ⊆  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐷 ) | 
						
							| 135 |  | iffalse | ⊢ ( ¬  𝐷  =  𝐵  →  if ( 𝐷  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝐷 ) )  =  ( 𝐹 ‘ 𝐷 ) ) | 
						
							| 136 | 10 135 | eqtrid | ⊢ ( ¬  𝐷  =  𝐵  →  𝑌  =  ( 𝐹 ‘ 𝐷 ) ) | 
						
							| 137 | 136 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝑌  =  ( 𝐹 ‘ 𝐷 ) ) | 
						
							| 138 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 139 | 138 | a1i | ⊢ ( 𝜑  →  ℂ  ⊆  ℂ ) | 
						
							| 140 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 141 |  | unicntop | ⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld ) | 
						
							| 142 | 141 | restid | ⊢ ( ( TopOpen ‘ ℂfld )  ∈  Top  →  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) ) | 
						
							| 143 | 34 142 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 144 | 143 | eqcomi | ⊢ ( TopOpen ‘ ℂfld )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) | 
						
							| 145 | 24 140 144 | cncfcn | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 146 | 22 139 145 | sylancr | ⊢ ( 𝜑  →  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 147 | 4 146 | eleqtrd | ⊢ ( 𝜑  →  𝐹  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 148 | 24 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 149 | 22 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ℂ ) | 
						
							| 150 |  | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ( 𝐴 (,) 𝐵 )  ⊆  ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  ∈  ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 151 | 148 149 150 | sylancr | ⊢ ( 𝜑  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  ∈  ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 152 | 148 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 153 |  | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  ∈  ( TopOn ‘ ( 𝐴 (,) 𝐵 ) )  ∧  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) )  →  ( 𝐹  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 154 | 151 152 153 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 155 | 147 154 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) | 
						
							| 156 | 155 | simprd | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) | 
						
							| 157 | 156 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) | 
						
							| 158 | 35 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝐴  ∈  ℝ* ) | 
						
							| 159 | 36 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝐵  ∈  ℝ* ) | 
						
							| 160 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝐷  ∈  ℝ ) | 
						
							| 161 | 1 6 7 63 8 | lelttrd | ⊢ ( 𝜑  →  𝐴  <  𝐷 ) | 
						
							| 162 | 161 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝐴  <  𝐷 ) | 
						
							| 163 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 164 | 62 | simprd | ⊢ ( 𝜑  →  𝐷  ≤  𝐵 ) | 
						
							| 165 | 164 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝐷  ≤  𝐵 ) | 
						
							| 166 |  | neqne | ⊢ ( ¬  𝐷  =  𝐵  →  𝐷  ≠  𝐵 ) | 
						
							| 167 | 166 | necomd | ⊢ ( ¬  𝐷  =  𝐵  →  𝐵  ≠  𝐷 ) | 
						
							| 168 | 167 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝐵  ≠  𝐷 ) | 
						
							| 169 | 160 163 165 168 | leneltd | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝐷  <  𝐵 ) | 
						
							| 170 | 158 159 160 162 169 | eliood | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝐷  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 171 |  | fveq2 | ⊢ ( 𝑥  =  𝐷  →  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 )  =  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) | 
						
							| 172 | 171 | eleq2d | ⊢ ( 𝑥  =  𝐷  →  ( 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 )  ↔  𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) ) | 
						
							| 173 | 172 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 )  ∧  𝐷  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) | 
						
							| 174 | 157 170 173 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) | 
						
							| 175 | 24 140 | cnplimc | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ⊆  ℂ  ∧  𝐷  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 )  ↔  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ( 𝐹 ‘ 𝐷 )  ∈  ( 𝐹  limℂ  𝐷 ) ) ) ) | 
						
							| 176 | 22 170 175 | sylancr | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  ( 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,) 𝐵 ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 )  ↔  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ( 𝐹 ‘ 𝐷 )  ∈  ( 𝐹  limℂ  𝐷 ) ) ) ) | 
						
							| 177 | 174 176 | mpbid | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ( 𝐹 ‘ 𝐷 )  ∈  ( 𝐹  limℂ  𝐷 ) ) ) | 
						
							| 178 | 177 | simprd | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  ( 𝐹 ‘ 𝐷 )  ∈  ( 𝐹  limℂ  𝐷 ) ) | 
						
							| 179 | 137 178 | eqeltrd | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝑌  ∈  ( 𝐹  limℂ  𝐷 ) ) | 
						
							| 180 | 134 179 | sselid | ⊢ ( ( 𝜑  ∧  ¬  𝐷  =  𝐵 )  →  𝑌  ∈  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐷 ) ) | 
						
							| 181 | 133 180 | pm2.61dan | ⊢ ( 𝜑  →  𝑌  ∈  ( ( 𝐹  ↾  ( 𝐶 (,) 𝐷 ) )  limℂ  𝐷 ) ) |