Metamath Proof Explorer


Theorem fourierdlem34

Description: A partition is one to one. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem34.p 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
fourierdlem34.m ( 𝜑𝑀 ∈ ℕ )
fourierdlem34.q ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
Assertion fourierdlem34 ( 𝜑𝑄 : ( 0 ... 𝑀 ) –1-1→ ℝ )

Proof

Step Hyp Ref Expression
1 fourierdlem34.p 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
2 fourierdlem34.m ( 𝜑𝑀 ∈ ℕ )
3 fourierdlem34.q ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
4 1 fourierdlem2 ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
5 2 4 syl ( 𝜑 → ( 𝑄 ∈ ( 𝑃𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
6 3 5 mpbid ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) )
7 6 simpld ( 𝜑𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) )
8 elmapi ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
9 7 8 syl ( 𝜑𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
10 simplr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄𝑖 ) = ( 𝑄𝑗 ) ) ∧ ¬ 𝑖 = 𝑗 ) → ( 𝑄𝑖 ) = ( 𝑄𝑗 ) )
11 9 ffvelrnda ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄𝑖 ) ∈ ℝ )
12 11 ad2antrr ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑄𝑖 ) ∈ ℝ )
13 9 ffvelrnda ( ( 𝜑𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄𝑘 ) ∈ ℝ )
14 13 ad4ant14 ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄𝑘 ) ∈ ℝ )
15 14 adantllr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄𝑘 ) ∈ ℝ )
16 eleq1w ( 𝑖 = 𝑘 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) )
17 16 anbi2d ( 𝑖 = 𝑘 → ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) )
18 fveq2 ( 𝑖 = 𝑘 → ( 𝑄𝑖 ) = ( 𝑄𝑘 ) )
19 oveq1 ( 𝑖 = 𝑘 → ( 𝑖 + 1 ) = ( 𝑘 + 1 ) )
20 19 fveq2d ( 𝑖 = 𝑘 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) )
21 18 20 breq12d ( 𝑖 = 𝑘 → ( ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) )
22 17 21 imbi12d ( 𝑖 = 𝑘 → ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝜑𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) )
23 6 simprrd ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) )
24 23 r19.21bi ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) )
25 22 24 chvarvv ( ( 𝜑𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) )
26 25 ad4ant14 ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) )
27 26 adantllr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) )
28 simpllr ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑖 ∈ ( 0 ... 𝑀 ) )
29 simplr ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ ( 0 ... 𝑀 ) )
30 simpr ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑖 < 𝑗 )
31 15 27 28 29 30 monoords ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑄𝑖 ) < ( 𝑄𝑗 ) )
32 12 31 ltned ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑄𝑖 ) ≠ ( 𝑄𝑗 ) )
33 32 neneqd ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ¬ ( 𝑄𝑖 ) = ( 𝑄𝑗 ) )
34 33 adantlr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ 𝑖 < 𝑗 ) → ¬ ( 𝑄𝑖 ) = ( 𝑄𝑗 ) )
35 simpll ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) )
36 elfzelz ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℤ )
37 36 zred ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℝ )
38 37 ad3antlr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑗 ∈ ℝ )
39 elfzelz ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℤ )
40 39 zred ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℝ )
41 40 ad4antlr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑖 ∈ ℝ )
42 neqne ( ¬ 𝑖 = 𝑗𝑖𝑗 )
43 42 necomd ( ¬ 𝑖 = 𝑗𝑗𝑖 )
44 43 ad2antlr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑗𝑖 )
45 simpr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → ¬ 𝑖 < 𝑗 )
46 38 41 44 45 lttri5d ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑗 < 𝑖 )
47 9 ffvelrnda ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄𝑗 ) ∈ ℝ )
48 47 adantr ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → ( 𝑄𝑗 ) ∈ ℝ )
49 48 adantllr ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → ( 𝑄𝑗 ) ∈ ℝ )
50 simp-4l ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝜑 )
51 50 13 sylancom ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄𝑘 ) ∈ ℝ )
52 simp-4l ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝜑 )
53 52 25 sylancom ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) )
54 simplr ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → 𝑗 ∈ ( 0 ... 𝑀 ) )
55 simpllr ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → 𝑖 ∈ ( 0 ... 𝑀 ) )
56 simpr ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → 𝑗 < 𝑖 )
57 51 53 54 55 56 monoords ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → ( 𝑄𝑗 ) < ( 𝑄𝑖 ) )
58 49 57 gtned ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → ( 𝑄𝑖 ) ≠ ( 𝑄𝑗 ) )
59 58 neneqd ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → ¬ ( 𝑄𝑖 ) = ( 𝑄𝑗 ) )
60 35 46 59 syl2anc ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → ¬ ( 𝑄𝑖 ) = ( 𝑄𝑗 ) )
61 34 60 pm2.61dan ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) → ¬ ( 𝑄𝑖 ) = ( 𝑄𝑗 ) )
62 61 adantlr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄𝑖 ) = ( 𝑄𝑗 ) ) ∧ ¬ 𝑖 = 𝑗 ) → ¬ ( 𝑄𝑖 ) = ( 𝑄𝑗 ) )
63 10 62 condan ( ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄𝑖 ) = ( 𝑄𝑗 ) ) → 𝑖 = 𝑗 )
64 63 ex ( ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑄𝑖 ) = ( 𝑄𝑗 ) → 𝑖 = 𝑗 ) )
65 64 ralrimiva ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑄𝑖 ) = ( 𝑄𝑗 ) → 𝑖 = 𝑗 ) )
66 65 ralrimiva ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑄𝑖 ) = ( 𝑄𝑗 ) → 𝑖 = 𝑗 ) )
67 dff13 ( 𝑄 : ( 0 ... 𝑀 ) –1-1→ ℝ ↔ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ∧ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑄𝑖 ) = ( 𝑄𝑗 ) → 𝑖 = 𝑗 ) ) )
68 9 66 67 sylanbrc ( 𝜑𝑄 : ( 0 ... 𝑀 ) –1-1→ ℝ )