Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem34.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
2 |
|
fourierdlem34.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
3 |
|
fourierdlem34.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
4 |
1
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
5 |
2 4
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
6 |
3 5
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
7 |
6
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
8 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
10 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) ∧ ¬ 𝑖 = 𝑗 ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
11 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
13 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑘 ) ∈ ℝ ) |
14 |
13
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑘 ) ∈ ℝ ) |
15 |
14
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑘 ) ∈ ℝ ) |
16 |
|
eleq1w |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
17 |
16
|
anbi2d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑘 ) ) |
19 |
|
oveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 + 1 ) = ( 𝑘 + 1 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑖 = 𝑘 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
21 |
18 20
|
breq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ 𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
22 |
17 21
|
imbi12d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
23 |
6
|
simprrd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
24 |
23
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
25 |
22 24
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
26 |
25
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
27 |
26
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
28 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
29 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
30 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑖 < 𝑗 ) |
31 |
15 27 28 29 30
|
monoords |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ 𝑗 ) ) |
32 |
12 31
|
ltned |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑄 ‘ 𝑖 ) ≠ ( 𝑄 ‘ 𝑗 ) ) |
33 |
32
|
neneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
34 |
33
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ 𝑖 < 𝑗 ) → ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
35 |
|
simpll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ) |
36 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
37 |
36
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℝ ) |
38 |
37
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑗 ∈ ℝ ) |
39 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℤ ) |
40 |
39
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℝ ) |
41 |
40
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑖 ∈ ℝ ) |
42 |
|
neqne |
⊢ ( ¬ 𝑖 = 𝑗 → 𝑖 ≠ 𝑗 ) |
43 |
42
|
necomd |
⊢ ( ¬ 𝑖 = 𝑗 → 𝑗 ≠ 𝑖 ) |
44 |
43
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑗 ≠ 𝑖 ) |
45 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → ¬ 𝑖 < 𝑗 ) |
46 |
38 41 44 45
|
lttri5d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑗 < 𝑖 ) |
47 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
49 |
48
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → ( 𝑄 ‘ 𝑗 ) ∈ ℝ ) |
50 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝜑 ) |
51 |
50 13
|
sylancom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑘 ) ∈ ℝ ) |
52 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝜑 ) |
53 |
52 25
|
sylancom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑘 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
54 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
55 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
56 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → 𝑗 < 𝑖 ) |
57 |
51 53 54 55 56
|
monoords |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ 𝑖 ) ) |
58 |
49 57
|
gtned |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → ( 𝑄 ‘ 𝑖 ) ≠ ( 𝑄 ‘ 𝑗 ) ) |
59 |
58
|
neneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 < 𝑖 ) → ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
60 |
35 46 59
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) ∧ ¬ 𝑖 < 𝑗 ) → ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
61 |
34 60
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑗 ) → ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
62 |
61
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) ∧ ¬ 𝑖 = 𝑗 ) → ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
63 |
10 62
|
condan |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) → 𝑖 = 𝑗 ) |
64 |
63
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
65 |
64
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
66 |
65
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
67 |
|
dff13 |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) –1-1→ ℝ ↔ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ∧ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
68 |
9 66 67
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) –1-1→ ℝ ) |