| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem34.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 2 |  | fourierdlem34.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 3 |  | fourierdlem34.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 4 | 1 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 6 | 3 5 | mpbid | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 8 |  | elmapi | ⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) )  ∧  ¬  𝑖  =  𝑗 )  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 11 | 9 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑗 )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 13 | 9 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 14 | 13 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑗 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 15 | 14 | adantllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑗 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 16 |  | eleq1w | ⊢ ( 𝑖  =  𝑘  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↔  𝑘  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 17 | 16 | anbi2d | ⊢ ( 𝑖  =  𝑘  →  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ↔  ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑀 ) ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑖  =  𝑘  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑖  =  𝑘  →  ( 𝑖  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( 𝑖  =  𝑘  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  =  ( 𝑄 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 21 | 18 20 | breq12d | ⊢ ( 𝑖  =  𝑘  →  ( ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑄 ‘ 𝑘 )  <  ( 𝑄 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 22 | 17 21 | imbi12d | ⊢ ( 𝑖  =  𝑘  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑘 )  <  ( 𝑄 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 23 | 6 | simprrd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 24 | 23 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 25 | 22 24 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑘 )  <  ( 𝑄 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 26 | 25 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑗 )  ∧  𝑘  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑘 )  <  ( 𝑄 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 27 | 26 | adantllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑗 )  ∧  𝑘  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑘 )  <  ( 𝑄 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 28 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑗 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 29 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑗 )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑗 )  →  𝑖  <  𝑗 ) | 
						
							| 31 | 15 27 28 29 30 | monoords | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑗 )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 32 | 12 31 | ltned | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑗 )  →  ( 𝑄 ‘ 𝑖 )  ≠  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 33 | 32 | neneqd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑗 )  →  ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 34 | 33 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑗 )  ∧  𝑖  <  𝑗 )  →  ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 35 |  | simpll | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑗 )  ∧  ¬  𝑖  <  𝑗 )  →  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 36 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 37 | 36 | zred | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 38 | 37 | ad3antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑗 )  ∧  ¬  𝑖  <  𝑗 )  →  𝑗  ∈  ℝ ) | 
						
							| 39 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑖  ∈  ℤ ) | 
						
							| 40 | 39 | zred | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑖  ∈  ℝ ) | 
						
							| 41 | 40 | ad4antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑗 )  ∧  ¬  𝑖  <  𝑗 )  →  𝑖  ∈  ℝ ) | 
						
							| 42 |  | neqne | ⊢ ( ¬  𝑖  =  𝑗  →  𝑖  ≠  𝑗 ) | 
						
							| 43 | 42 | necomd | ⊢ ( ¬  𝑖  =  𝑗  →  𝑗  ≠  𝑖 ) | 
						
							| 44 | 43 | ad2antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑗 )  ∧  ¬  𝑖  <  𝑗 )  →  𝑗  ≠  𝑖 ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑗 )  ∧  ¬  𝑖  <  𝑗 )  →  ¬  𝑖  <  𝑗 ) | 
						
							| 46 | 38 41 44 45 | lttri5d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑗 )  ∧  ¬  𝑖  <  𝑗 )  →  𝑗  <  𝑖 ) | 
						
							| 47 | 9 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  →  ( 𝑄 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 49 | 48 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  →  ( 𝑄 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 50 |  | simp-4l | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝜑 ) | 
						
							| 51 | 50 13 | sylancom | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 52 |  | simp-4l | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  ∧  𝑘  ∈  ( 0 ..^ 𝑀 ) )  →  𝜑 ) | 
						
							| 53 | 52 25 | sylancom | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  ∧  𝑘  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑘 )  <  ( 𝑄 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 54 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 55 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 56 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  →  𝑗  <  𝑖 ) | 
						
							| 57 | 51 53 54 55 56 | monoords | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  →  ( 𝑄 ‘ 𝑗 )  <  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 58 | 49 57 | gtned | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  →  ( 𝑄 ‘ 𝑖 )  ≠  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 59 | 58 | neneqd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  <  𝑖 )  →  ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 60 | 35 46 59 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑗 )  ∧  ¬  𝑖  <  𝑗 )  →  ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 61 | 34 60 | pm2.61dan | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑗 )  →  ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 62 | 61 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) )  ∧  ¬  𝑖  =  𝑗 )  →  ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 63 | 10 62 | condan | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) )  →  𝑖  =  𝑗 ) | 
						
							| 64 | 63 | ex | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) | 
						
							| 65 | 64 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) | 
						
							| 66 | 65 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) | 
						
							| 67 |  | dff13 | ⊢ ( 𝑄 : ( 0 ... 𝑀 ) –1-1→ ℝ  ↔  ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 68 | 9 66 67 | sylanbrc | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) –1-1→ ℝ ) |