Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem36.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fourierdlem36.assr |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
3 |
|
fourierdlem36.f |
⊢ 𝐹 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ) |
4 |
|
fourierdlem36.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝐴 ) − 1 ) |
5 |
|
ltso |
⊢ < Or ℝ |
6 |
|
soss |
⊢ ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) ) |
7 |
2 5 6
|
mpisyl |
⊢ ( 𝜑 → < Or 𝐴 ) |
8 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
9 |
|
eqid |
⊢ ( ( ♯ ‘ 𝐴 ) + ( 0 − 1 ) ) = ( ( ♯ ‘ 𝐴 ) + ( 0 − 1 ) ) |
10 |
1 7 8 9
|
fzisoeu |
⊢ ( 𝜑 → ∃! 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( 0 − 1 ) ) ) , 𝐴 ) ) |
11 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
13 |
12
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
14 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
15 |
13 14
|
negsubd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) + - 1 ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
16 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
17 |
16
|
eqcomi |
⊢ ( 0 − 1 ) = - 1 |
18 |
17
|
oveq2i |
⊢ ( ( ♯ ‘ 𝐴 ) + ( 0 − 1 ) ) = ( ( ♯ ‘ 𝐴 ) + - 1 ) |
19 |
15 18 4
|
3eqtr4g |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) + ( 0 − 1 ) ) = 𝑁 ) |
20 |
19
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( 0 − 1 ) ) ) = ( 0 ... 𝑁 ) ) |
21 |
|
isoeq4 |
⊢ ( ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( 0 − 1 ) ) ) = ( 0 ... 𝑁 ) → ( 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( 0 − 1 ) ) ) , 𝐴 ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ) ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → ( 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( 0 − 1 ) ) ) , 𝐴 ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ) ) |
23 |
22
|
eubidv |
⊢ ( 𝜑 → ( ∃! 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( 0 − 1 ) ) ) , 𝐴 ) ↔ ∃! 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ) ) |
24 |
10 23
|
mpbid |
⊢ ( 𝜑 → ∃! 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ) |
25 |
|
iotacl |
⊢ ( ∃! 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) → ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ) ∈ { 𝑓 ∣ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) } ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ) ∈ { 𝑓 ∣ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) } ) |
27 |
3 26
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ { 𝑓 ∣ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) } ) |
28 |
|
iotaex |
⊢ ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ) ∈ V |
29 |
3 28
|
eqeltri |
⊢ 𝐹 ∈ V |
30 |
|
isoeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ↔ 𝐹 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ) ) |
31 |
29 30
|
elab |
⊢ ( 𝐹 ∈ { 𝑓 ∣ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) } ↔ 𝐹 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ) |
32 |
27 31
|
sylib |
⊢ ( 𝜑 → 𝐹 Isom < , < ( ( 0 ... 𝑁 ) , 𝐴 ) ) |