| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem42.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 2 |
|
fourierdlem42.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 3 |
|
fourierdlem42.bc |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
| 4 |
|
fourierdlem42.t |
⊢ 𝑇 = ( 𝐶 − 𝐵 ) |
| 5 |
|
fourierdlem42.a |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) |
| 6 |
|
fourierdlem42.af |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 7 |
|
fourierdlem42.ba |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 8 |
|
fourierdlem42.ca |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
| 9 |
|
fourierdlem42.d |
⊢ 𝐷 = ( abs ∘ − ) |
| 10 |
|
fourierdlem42.i |
⊢ 𝐼 = ( ( 𝐴 × 𝐴 ) ∖ I ) |
| 11 |
|
fourierdlem42.r |
⊢ 𝑅 = ran ( 𝐷 ↾ 𝐼 ) |
| 12 |
|
fourierdlem42.e |
⊢ 𝐸 = inf ( 𝑅 , ℝ , < ) |
| 13 |
|
fourierdlem42.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 14 |
|
fourierdlem42.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 15 |
|
fourierdlem42.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 16 |
|
fourierdlem42.k |
⊢ 𝐾 = ( 𝐽 ↾t ( 𝑋 [,] 𝑌 ) ) |
| 17 |
|
fourierdlem42.h |
⊢ 𝐻 = { 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 } |
| 18 |
|
fourierdlem42.15 |
⊢ ( 𝜓 ↔ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 19 |
15 16
|
icccmp |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → 𝐾 ∈ Comp ) |
| 20 |
13 14 19
|
syl2anc |
⊢ ( 𝜑 → 𝐾 ∈ Comp ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 ∈ Fin ) → 𝐾 ∈ Comp ) |
| 22 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 } ⊆ ( 𝑋 [,] 𝑌 ) |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 } ⊆ ( 𝑋 [,] 𝑌 ) ) |
| 24 |
17 23
|
eqsstrid |
⊢ ( 𝜑 → 𝐻 ⊆ ( 𝑋 [,] 𝑌 ) ) |
| 25 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 26 |
15 25
|
eqeltri |
⊢ 𝐽 ∈ Top |
| 27 |
13 14
|
iccssred |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 28 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 29 |
15
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
| 30 |
28 29
|
eqtr4i |
⊢ ℝ = ∪ 𝐽 |
| 31 |
30
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) → ( 𝑋 [,] 𝑌 ) = ∪ ( 𝐽 ↾t ( 𝑋 [,] 𝑌 ) ) ) |
| 32 |
26 27 31
|
sylancr |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) = ∪ ( 𝐽 ↾t ( 𝑋 [,] 𝑌 ) ) ) |
| 33 |
16
|
unieqi |
⊢ ∪ 𝐾 = ∪ ( 𝐽 ↾t ( 𝑋 [,] 𝑌 ) ) |
| 34 |
33
|
eqcomi |
⊢ ∪ ( 𝐽 ↾t ( 𝑋 [,] 𝑌 ) ) = ∪ 𝐾 |
| 35 |
32 34
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) = ∪ 𝐾 ) |
| 36 |
24 35
|
sseqtrd |
⊢ ( 𝜑 → 𝐻 ⊆ ∪ 𝐾 ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 ∈ Fin ) → 𝐻 ⊆ ∪ 𝐾 ) |
| 38 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 ∈ Fin ) → ¬ 𝐻 ∈ Fin ) |
| 39 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 40 |
39
|
bwth |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐻 ⊆ ∪ 𝐾 ∧ ¬ 𝐻 ∈ Fin ) → ∃ 𝑥 ∈ ∪ 𝐾 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐻 ) ) |
| 41 |
21 37 38 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 ∈ Fin ) → ∃ 𝑥 ∈ ∪ 𝐾 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐻 ) ) |
| 42 |
24 27
|
sstrd |
⊢ ( 𝜑 → 𝐻 ⊆ ℝ ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) ∧ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ) → 𝐻 ⊆ ℝ ) |
| 44 |
|
ne0i |
⊢ ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ≠ ∅ ) |
| 45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) ∧ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ) → ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ≠ ∅ ) |
| 46 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 47 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
| 48 |
46 47
|
ax-mp |
⊢ abs Fn ℂ |
| 49 |
|
subf |
⊢ − : ( ℂ × ℂ ) ⟶ ℂ |
| 50 |
|
ffn |
⊢ ( − : ( ℂ × ℂ ) ⟶ ℂ → − Fn ( ℂ × ℂ ) ) |
| 51 |
49 50
|
ax-mp |
⊢ − Fn ( ℂ × ℂ ) |
| 52 |
|
frn |
⊢ ( − : ( ℂ × ℂ ) ⟶ ℂ → ran − ⊆ ℂ ) |
| 53 |
49 52
|
ax-mp |
⊢ ran − ⊆ ℂ |
| 54 |
|
fnco |
⊢ ( ( abs Fn ℂ ∧ − Fn ( ℂ × ℂ ) ∧ ran − ⊆ ℂ ) → ( abs ∘ − ) Fn ( ℂ × ℂ ) ) |
| 55 |
48 51 53 54
|
mp3an |
⊢ ( abs ∘ − ) Fn ( ℂ × ℂ ) |
| 56 |
9
|
fneq1i |
⊢ ( 𝐷 Fn ( ℂ × ℂ ) ↔ ( abs ∘ − ) Fn ( ℂ × ℂ ) ) |
| 57 |
55 56
|
mpbir |
⊢ 𝐷 Fn ( ℂ × ℂ ) |
| 58 |
1 2
|
iccssred |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
| 59 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 60 |
58 59
|
sstrdi |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℂ ) |
| 61 |
5 60
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 62 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐴 ⊆ ℂ ) → ( 𝐴 × 𝐴 ) ⊆ ( ℂ × ℂ ) ) |
| 63 |
61 61 62
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 × 𝐴 ) ⊆ ( ℂ × ℂ ) ) |
| 64 |
63
|
ssdifssd |
⊢ ( 𝜑 → ( ( 𝐴 × 𝐴 ) ∖ I ) ⊆ ( ℂ × ℂ ) ) |
| 65 |
10 64
|
eqsstrid |
⊢ ( 𝜑 → 𝐼 ⊆ ( ℂ × ℂ ) ) |
| 66 |
|
fnssres |
⊢ ( ( 𝐷 Fn ( ℂ × ℂ ) ∧ 𝐼 ⊆ ( ℂ × ℂ ) ) → ( 𝐷 ↾ 𝐼 ) Fn 𝐼 ) |
| 67 |
57 65 66
|
sylancr |
⊢ ( 𝜑 → ( 𝐷 ↾ 𝐼 ) Fn 𝐼 ) |
| 68 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( 𝐷 ‘ 𝑥 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( 𝐷 ‘ 𝑥 ) ) |
| 70 |
9
|
fveq1i |
⊢ ( 𝐷 ‘ 𝑥 ) = ( ( abs ∘ − ) ‘ 𝑥 ) |
| 71 |
70
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐷 ‘ 𝑥 ) = ( ( abs ∘ − ) ‘ 𝑥 ) ) |
| 72 |
|
ffun |
⊢ ( − : ( ℂ × ℂ ) ⟶ ℂ → Fun − ) |
| 73 |
49 72
|
ax-mp |
⊢ Fun − |
| 74 |
65
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ ( ℂ × ℂ ) ) |
| 75 |
49
|
fdmi |
⊢ dom − = ( ℂ × ℂ ) |
| 76 |
74 75
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ dom − ) |
| 77 |
|
fvco |
⊢ ( ( Fun − ∧ 𝑥 ∈ dom − ) → ( ( abs ∘ − ) ‘ 𝑥 ) = ( abs ‘ ( − ‘ 𝑥 ) ) ) |
| 78 |
73 76 77
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( abs ∘ − ) ‘ 𝑥 ) = ( abs ‘ ( − ‘ 𝑥 ) ) ) |
| 79 |
69 71 78
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( abs ‘ ( − ‘ 𝑥 ) ) ) |
| 80 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → − : ( ℂ × ℂ ) ⟶ ℂ ) |
| 81 |
80 74
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( − ‘ 𝑥 ) ∈ ℂ ) |
| 82 |
81
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( abs ‘ ( − ‘ 𝑥 ) ) ∈ ℝ ) |
| 83 |
79 82
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) ∈ ℝ ) |
| 84 |
|
elxp2 |
⊢ ( 𝑥 ∈ ( ℂ × ℂ ) ↔ ∃ 𝑦 ∈ ℂ ∃ 𝑧 ∈ ℂ 𝑥 = 〈 𝑦 , 𝑧 〉 ) |
| 85 |
74 84
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∃ 𝑦 ∈ ℂ ∃ 𝑧 ∈ ℂ 𝑥 = 〈 𝑦 , 𝑧 〉 ) |
| 86 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( − ‘ 𝑥 ) = ( − ‘ 〈 𝑦 , 𝑧 〉 ) ) |
| 87 |
86
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → ( − ‘ 𝑥 ) = ( − ‘ 〈 𝑦 , 𝑧 〉 ) ) |
| 88 |
|
df-ov |
⊢ ( 𝑦 − 𝑧 ) = ( − ‘ 〈 𝑦 , 𝑧 〉 ) |
| 89 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 𝜑 ) |
| 90 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 𝑥 = 〈 𝑦 , 𝑧 〉 ) |
| 91 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 𝑥 ∈ 𝐼 ) |
| 92 |
90 91
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ) |
| 93 |
92
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ) |
| 94 |
93
|
3adant2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ) |
| 95 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ) → 𝐴 ⊆ ℂ ) |
| 96 |
10
|
eleq2i |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐴 × 𝐴 ) ∖ I ) ) |
| 97 |
|
eldif |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐴 × 𝐴 ) ∖ I ) ↔ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 × 𝐴 ) ∧ ¬ 〈 𝑦 , 𝑧 〉 ∈ I ) ) |
| 98 |
96 97
|
sylbb |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐼 → ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 × 𝐴 ) ∧ ¬ 〈 𝑦 , 𝑧 〉 ∈ I ) ) |
| 99 |
98
|
simpld |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐼 → 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 100 |
|
opelxp |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 × 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
| 101 |
99 100
|
sylib |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐼 → ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
| 102 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
| 103 |
102
|
simpld |
⊢ ( ( 𝜑 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ) → 𝑦 ∈ 𝐴 ) |
| 104 |
95 103
|
sseldd |
⊢ ( ( 𝜑 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ) → 𝑦 ∈ ℂ ) |
| 105 |
102
|
simprd |
⊢ ( ( 𝜑 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ) → 𝑧 ∈ 𝐴 ) |
| 106 |
95 105
|
sseldd |
⊢ ( ( 𝜑 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ) → 𝑧 ∈ ℂ ) |
| 107 |
98
|
simprd |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐼 → ¬ 〈 𝑦 , 𝑧 〉 ∈ I ) |
| 108 |
|
df-br |
⊢ ( 𝑦 I 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ I ) |
| 109 |
107 108
|
sylnibr |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐼 → ¬ 𝑦 I 𝑧 ) |
| 110 |
|
vex |
⊢ 𝑧 ∈ V |
| 111 |
110
|
ideq |
⊢ ( 𝑦 I 𝑧 ↔ 𝑦 = 𝑧 ) |
| 112 |
109 111
|
sylnib |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐼 → ¬ 𝑦 = 𝑧 ) |
| 113 |
112
|
neqned |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐼 → 𝑦 ≠ 𝑧 ) |
| 114 |
113
|
adantl |
⊢ ( ( 𝜑 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ) → 𝑦 ≠ 𝑧 ) |
| 115 |
104 106 114
|
subne0d |
⊢ ( ( 𝜑 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐼 ) → ( 𝑦 − 𝑧 ) ≠ 0 ) |
| 116 |
89 94 115
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → ( 𝑦 − 𝑧 ) ≠ 0 ) |
| 117 |
88 116
|
eqnetrrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → ( − ‘ 〈 𝑦 , 𝑧 〉 ) ≠ 0 ) |
| 118 |
87 117
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → ( − ‘ 𝑥 ) ≠ 0 ) |
| 119 |
118
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( − ‘ 𝑥 ) ≠ 0 ) ) ) |
| 120 |
119
|
rexlimdvv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∃ 𝑦 ∈ ℂ ∃ 𝑧 ∈ ℂ 𝑥 = 〈 𝑦 , 𝑧 〉 → ( − ‘ 𝑥 ) ≠ 0 ) ) |
| 121 |
85 120
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( − ‘ 𝑥 ) ≠ 0 ) |
| 122 |
|
absgt0 |
⊢ ( ( − ‘ 𝑥 ) ∈ ℂ → ( ( − ‘ 𝑥 ) ≠ 0 ↔ 0 < ( abs ‘ ( − ‘ 𝑥 ) ) ) ) |
| 123 |
81 122
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( − ‘ 𝑥 ) ≠ 0 ↔ 0 < ( abs ‘ ( − ‘ 𝑥 ) ) ) ) |
| 124 |
121 123
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 0 < ( abs ‘ ( − ‘ 𝑥 ) ) ) |
| 125 |
79
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( abs ‘ ( − ‘ 𝑥 ) ) = ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) ) |
| 126 |
124 125
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 0 < ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) ) |
| 127 |
83 126
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) ∈ ℝ+ ) |
| 128 |
127
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) ∈ ℝ+ ) |
| 129 |
|
fnfvrnss |
⊢ ( ( ( 𝐷 ↾ 𝐼 ) Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) ∈ ℝ+ ) → ran ( 𝐷 ↾ 𝐼 ) ⊆ ℝ+ ) |
| 130 |
67 128 129
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝐷 ↾ 𝐼 ) ⊆ ℝ+ ) |
| 131 |
11 130
|
eqsstrid |
⊢ ( 𝜑 → 𝑅 ⊆ ℝ+ ) |
| 132 |
|
ltso |
⊢ < Or ℝ |
| 133 |
132
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
| 134 |
|
xpfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ∈ Fin ) |
| 135 |
6 6 134
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 × 𝐴 ) ∈ Fin ) |
| 136 |
|
diffi |
⊢ ( ( 𝐴 × 𝐴 ) ∈ Fin → ( ( 𝐴 × 𝐴 ) ∖ I ) ∈ Fin ) |
| 137 |
135 136
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 × 𝐴 ) ∖ I ) ∈ Fin ) |
| 138 |
10 137
|
eqeltrid |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 139 |
|
fnfi |
⊢ ( ( ( 𝐷 ↾ 𝐼 ) Fn 𝐼 ∧ 𝐼 ∈ Fin ) → ( 𝐷 ↾ 𝐼 ) ∈ Fin ) |
| 140 |
67 138 139
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ↾ 𝐼 ) ∈ Fin ) |
| 141 |
|
rnfi |
⊢ ( ( 𝐷 ↾ 𝐼 ) ∈ Fin → ran ( 𝐷 ↾ 𝐼 ) ∈ Fin ) |
| 142 |
140 141
|
syl |
⊢ ( 𝜑 → ran ( 𝐷 ↾ 𝐼 ) ∈ Fin ) |
| 143 |
11 142
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
| 144 |
11
|
a1i |
⊢ ( 𝜑 → 𝑅 = ran ( 𝐷 ↾ 𝐼 ) ) |
| 145 |
9
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( abs ∘ − ) ) |
| 146 |
145
|
reseq1d |
⊢ ( 𝜑 → ( 𝐷 ↾ 𝐼 ) = ( ( abs ∘ − ) ↾ 𝐼 ) ) |
| 147 |
146
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ↾ 𝐼 ) ‘ 〈 𝐵 , 𝐶 〉 ) = ( ( ( abs ∘ − ) ↾ 𝐼 ) ‘ 〈 𝐵 , 𝐶 〉 ) ) |
| 148 |
|
opelxp |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) |
| 149 |
7 8 148
|
sylanbrc |
⊢ ( 𝜑 → 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 150 |
1 3
|
ltned |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 151 |
150
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐵 = 𝐶 ) |
| 152 |
|
ideqg |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝐵 I 𝐶 ↔ 𝐵 = 𝐶 ) ) |
| 153 |
8 152
|
syl |
⊢ ( 𝜑 → ( 𝐵 I 𝐶 ↔ 𝐵 = 𝐶 ) ) |
| 154 |
151 153
|
mtbird |
⊢ ( 𝜑 → ¬ 𝐵 I 𝐶 ) |
| 155 |
|
df-br |
⊢ ( 𝐵 I 𝐶 ↔ 〈 𝐵 , 𝐶 〉 ∈ I ) |
| 156 |
154 155
|
sylnib |
⊢ ( 𝜑 → ¬ 〈 𝐵 , 𝐶 〉 ∈ I ) |
| 157 |
149 156
|
eldifd |
⊢ ( 𝜑 → 〈 𝐵 , 𝐶 〉 ∈ ( ( 𝐴 × 𝐴 ) ∖ I ) ) |
| 158 |
157 10
|
eleqtrrdi |
⊢ ( 𝜑 → 〈 𝐵 , 𝐶 〉 ∈ 𝐼 ) |
| 159 |
|
fvres |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ 𝐼 → ( ( ( abs ∘ − ) ↾ 𝐼 ) ‘ 〈 𝐵 , 𝐶 〉 ) = ( ( abs ∘ − ) ‘ 〈 𝐵 , 𝐶 〉 ) ) |
| 160 |
158 159
|
syl |
⊢ ( 𝜑 → ( ( ( abs ∘ − ) ↾ 𝐼 ) ‘ 〈 𝐵 , 𝐶 〉 ) = ( ( abs ∘ − ) ‘ 〈 𝐵 , 𝐶 〉 ) ) |
| 161 |
1
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 162 |
2
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 163 |
|
opelxp |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( ℂ × ℂ ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
| 164 |
161 162 163
|
sylanbrc |
⊢ ( 𝜑 → 〈 𝐵 , 𝐶 〉 ∈ ( ℂ × ℂ ) ) |
| 165 |
164 75
|
eleqtrrdi |
⊢ ( 𝜑 → 〈 𝐵 , 𝐶 〉 ∈ dom − ) |
| 166 |
|
fvco |
⊢ ( ( Fun − ∧ 〈 𝐵 , 𝐶 〉 ∈ dom − ) → ( ( abs ∘ − ) ‘ 〈 𝐵 , 𝐶 〉 ) = ( abs ‘ ( − ‘ 〈 𝐵 , 𝐶 〉 ) ) ) |
| 167 |
73 165 166
|
sylancr |
⊢ ( 𝜑 → ( ( abs ∘ − ) ‘ 〈 𝐵 , 𝐶 〉 ) = ( abs ‘ ( − ‘ 〈 𝐵 , 𝐶 〉 ) ) ) |
| 168 |
|
df-ov |
⊢ ( 𝐵 − 𝐶 ) = ( − ‘ 〈 𝐵 , 𝐶 〉 ) |
| 169 |
168
|
eqcomi |
⊢ ( − ‘ 〈 𝐵 , 𝐶 〉 ) = ( 𝐵 − 𝐶 ) |
| 170 |
169
|
a1i |
⊢ ( 𝜑 → ( − ‘ 〈 𝐵 , 𝐶 〉 ) = ( 𝐵 − 𝐶 ) ) |
| 171 |
170
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( − ‘ 〈 𝐵 , 𝐶 〉 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 172 |
167 171
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ∘ − ) ‘ 〈 𝐵 , 𝐶 〉 ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 173 |
147 160 172
|
3eqtrrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐶 ) ) = ( ( 𝐷 ↾ 𝐼 ) ‘ 〈 𝐵 , 𝐶 〉 ) ) |
| 174 |
|
fnfvelrn |
⊢ ( ( ( 𝐷 ↾ 𝐼 ) Fn 𝐼 ∧ 〈 𝐵 , 𝐶 〉 ∈ 𝐼 ) → ( ( 𝐷 ↾ 𝐼 ) ‘ 〈 𝐵 , 𝐶 〉 ) ∈ ran ( 𝐷 ↾ 𝐼 ) ) |
| 175 |
67 158 174
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 ↾ 𝐼 ) ‘ 〈 𝐵 , 𝐶 〉 ) ∈ ran ( 𝐷 ↾ 𝐼 ) ) |
| 176 |
173 175
|
eqeltrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐶 ) ) ∈ ran ( 𝐷 ↾ 𝐼 ) ) |
| 177 |
|
ne0i |
⊢ ( ( abs ‘ ( 𝐵 − 𝐶 ) ) ∈ ran ( 𝐷 ↾ 𝐼 ) → ran ( 𝐷 ↾ 𝐼 ) ≠ ∅ ) |
| 178 |
176 177
|
syl |
⊢ ( 𝜑 → ran ( 𝐷 ↾ 𝐼 ) ≠ ∅ ) |
| 179 |
144 178
|
eqnetrd |
⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
| 180 |
|
resss |
⊢ ( 𝐷 ↾ 𝐼 ) ⊆ 𝐷 |
| 181 |
|
rnss |
⊢ ( ( 𝐷 ↾ 𝐼 ) ⊆ 𝐷 → ran ( 𝐷 ↾ 𝐼 ) ⊆ ran 𝐷 ) |
| 182 |
180 181
|
ax-mp |
⊢ ran ( 𝐷 ↾ 𝐼 ) ⊆ ran 𝐷 |
| 183 |
9
|
rneqi |
⊢ ran 𝐷 = ran ( abs ∘ − ) |
| 184 |
|
rncoss |
⊢ ran ( abs ∘ − ) ⊆ ran abs |
| 185 |
|
frn |
⊢ ( abs : ℂ ⟶ ℝ → ran abs ⊆ ℝ ) |
| 186 |
46 185
|
ax-mp |
⊢ ran abs ⊆ ℝ |
| 187 |
184 186
|
sstri |
⊢ ran ( abs ∘ − ) ⊆ ℝ |
| 188 |
183 187
|
eqsstri |
⊢ ran 𝐷 ⊆ ℝ |
| 189 |
182 188
|
sstri |
⊢ ran ( 𝐷 ↾ 𝐼 ) ⊆ ℝ |
| 190 |
11 189
|
eqsstri |
⊢ 𝑅 ⊆ ℝ |
| 191 |
190
|
a1i |
⊢ ( 𝜑 → 𝑅 ⊆ ℝ ) |
| 192 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝑅 ⊆ ℝ ) ) → inf ( 𝑅 , ℝ , < ) ∈ 𝑅 ) |
| 193 |
133 143 179 191 192
|
syl13anc |
⊢ ( 𝜑 → inf ( 𝑅 , ℝ , < ) ∈ 𝑅 ) |
| 194 |
131 193
|
sseldd |
⊢ ( 𝜑 → inf ( 𝑅 , ℝ , < ) ∈ ℝ+ ) |
| 195 |
12 194
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 196 |
195
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) ∧ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ) → 𝐸 ∈ ℝ+ ) |
| 197 |
15 43 45 196
|
lptre2pt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) ∧ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ) → ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ 𝐻 ( 𝑦 ≠ 𝑧 ∧ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝐸 ) ) |
| 198 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝜑 ) |
| 199 |
42
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐻 ) → 𝑦 ∈ ℝ ) |
| 200 |
199
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → 𝑦 ∈ ℝ ) |
| 201 |
200
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝑦 ∈ ℝ ) |
| 202 |
42
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐻 ) → 𝑧 ∈ ℝ ) |
| 203 |
202
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → 𝑧 ∈ ℝ ) |
| 204 |
203
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝑧 ∈ ℝ ) |
| 205 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝑦 ≠ 𝑧 ) |
| 206 |
201 204 205
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) |
| 207 |
17
|
eleq2i |
⊢ ( 𝑦 ∈ 𝐻 ↔ 𝑦 ∈ { 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 } ) |
| 208 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( 𝑘 · 𝑇 ) ) ) |
| 209 |
208
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ↔ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 210 |
209
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 211 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 · 𝑇 ) = ( 𝑗 · 𝑇 ) ) |
| 212 |
211
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( 𝑗 · 𝑇 ) ) ) |
| 213 |
212
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ↔ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 214 |
213
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ↔ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) |
| 215 |
210 214
|
bitrdi |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ↔ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 216 |
215
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 } ↔ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 217 |
207 216
|
sylbb |
⊢ ( 𝑦 ∈ 𝐻 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 218 |
217
|
simprd |
⊢ ( 𝑦 ∈ 𝐻 → ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) |
| 219 |
218
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) |
| 220 |
17
|
eleq2i |
⊢ ( 𝑧 ∈ 𝐻 ↔ 𝑧 ∈ { 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 } ) |
| 221 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 + ( 𝑘 · 𝑇 ) ) = ( 𝑧 + ( 𝑘 · 𝑇 ) ) ) |
| 222 |
221
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ↔ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 223 |
222
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ↔ ∃ 𝑘 ∈ ℤ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 224 |
223
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 } ↔ ( 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∃ 𝑘 ∈ ℤ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 225 |
220 224
|
sylbb |
⊢ ( 𝑧 ∈ 𝐻 → ( 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∃ 𝑘 ∈ ℤ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 226 |
225
|
simprd |
⊢ ( 𝑧 ∈ 𝐻 → ∃ 𝑘 ∈ ℤ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) |
| 227 |
226
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ∃ 𝑘 ∈ ℤ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) |
| 228 |
|
reeanv |
⊢ ( ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ( ∃ 𝑗 ∈ ℤ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ∃ 𝑘 ∈ ℤ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 229 |
219 227 228
|
sylanbrc |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 230 |
229
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 231 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑦 < 𝑧 ) → 𝜑 ) |
| 232 |
|
simpl1 |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑦 < 𝑧 ) → 𝑦 ∈ ℝ ) |
| 233 |
|
simpl2 |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑦 < 𝑧 ) → 𝑧 ∈ ℝ ) |
| 234 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑦 < 𝑧 ) → 𝑦 < 𝑧 ) |
| 235 |
232 233 234
|
3jca |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑦 < 𝑧 ) → ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧 ) ) |
| 236 |
235
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) ∧ 𝑦 < 𝑧 ) → ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧 ) ) |
| 237 |
236
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑦 < 𝑧 ) → ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧 ) ) |
| 238 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑦 < 𝑧 ) → ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 239 |
|
eleq1 |
⊢ ( 𝑏 = 𝑧 → ( 𝑏 ∈ ℝ ↔ 𝑧 ∈ ℝ ) ) |
| 240 |
|
breq2 |
⊢ ( 𝑏 = 𝑧 → ( 𝑦 < 𝑏 ↔ 𝑦 < 𝑧 ) ) |
| 241 |
239 240
|
3anbi23d |
⊢ ( 𝑏 = 𝑧 → ( ( 𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧 ) ) ) |
| 242 |
241
|
anbi2d |
⊢ ( 𝑏 = 𝑧 → ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧 ) ) ) ) |
| 243 |
|
oveq1 |
⊢ ( 𝑏 = 𝑧 → ( 𝑏 + ( 𝑘 · 𝑇 ) ) = ( 𝑧 + ( 𝑘 · 𝑇 ) ) ) |
| 244 |
243
|
eleq1d |
⊢ ( 𝑏 = 𝑧 → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ↔ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 245 |
244
|
anbi2d |
⊢ ( 𝑏 = 𝑧 → ( ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 246 |
245
|
2rexbidv |
⊢ ( 𝑏 = 𝑧 → ( ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 247 |
242 246
|
anbi12d |
⊢ ( 𝑏 = 𝑧 → ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) ) |
| 248 |
|
oveq2 |
⊢ ( 𝑏 = 𝑧 → ( 𝑦 − 𝑏 ) = ( 𝑦 − 𝑧 ) ) |
| 249 |
248
|
fveq2d |
⊢ ( 𝑏 = 𝑧 → ( abs ‘ ( 𝑦 − 𝑏 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 250 |
249
|
breq2d |
⊢ ( 𝑏 = 𝑧 → ( 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑏 ) ) ↔ 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) ) |
| 251 |
247 250
|
imbi12d |
⊢ ( 𝑏 = 𝑧 → ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑏 ) ) ) ↔ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) ) ) |
| 252 |
|
eleq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 ∈ ℝ ↔ 𝑦 ∈ ℝ ) ) |
| 253 |
|
breq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 < 𝑏 ↔ 𝑦 < 𝑏 ) ) |
| 254 |
252 253
|
3anbi13d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏 ) ) ) |
| 255 |
254
|
anbi2d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏 ) ) ) ) |
| 256 |
|
oveq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑦 + ( 𝑗 · 𝑇 ) ) ) |
| 257 |
256
|
eleq1d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ↔ ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 258 |
257
|
anbi1d |
⊢ ( 𝑎 = 𝑦 → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 259 |
258
|
2rexbidv |
⊢ ( 𝑎 = 𝑦 → ( ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 260 |
255 259
|
anbi12d |
⊢ ( 𝑎 = 𝑦 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) ) |
| 261 |
|
oveq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 − 𝑏 ) = ( 𝑦 − 𝑏 ) ) |
| 262 |
261
|
fveq2d |
⊢ ( 𝑎 = 𝑦 → ( abs ‘ ( 𝑎 − 𝑏 ) ) = ( abs ‘ ( 𝑦 − 𝑏 ) ) ) |
| 263 |
262
|
breq2d |
⊢ ( 𝑎 = 𝑦 → ( 𝐸 ≤ ( abs ‘ ( 𝑎 − 𝑏 ) ) ↔ 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑏 ) ) ) ) |
| 264 |
260 263
|
imbi12d |
⊢ ( 𝑎 = 𝑦 → ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ↔ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑏 ) ) ) ) ) |
| 265 |
18
|
simprbi |
⊢ ( 𝜓 → ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 266 |
18
|
biimpi |
⊢ ( 𝜓 → ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 267 |
266
|
simpld |
⊢ ( 𝜓 → ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ) ) |
| 268 |
267
|
simpld |
⊢ ( 𝜓 → 𝜑 ) |
| 269 |
268 1
|
syl |
⊢ ( 𝜓 → 𝐵 ∈ ℝ ) |
| 270 |
269
|
adantr |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 271 |
268 2
|
syl |
⊢ ( 𝜓 → 𝐶 ∈ ℝ ) |
| 272 |
271
|
adantr |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐶 ∈ ℝ ) |
| 273 |
268 5
|
syl |
⊢ ( 𝜓 → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) |
| 274 |
273
|
sselda |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ( 𝐵 [,] 𝐶 ) ) |
| 275 |
274
|
adantrl |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ( 𝐵 [,] 𝐶 ) ) |
| 276 |
273
|
sselda |
⊢ ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ( 𝐵 [,] 𝐶 ) ) |
| 277 |
276
|
adantrr |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ( 𝐵 [,] 𝐶 ) ) |
| 278 |
270 272 275 277
|
iccsuble |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ≤ ( 𝐶 − 𝐵 ) ) |
| 279 |
278 4
|
breqtrrdi |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ≤ 𝑇 ) |
| 280 |
279
|
3adant2 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ≤ 𝑇 ) |
| 281 |
280
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ 𝑘 ≤ 𝑗 ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ≤ 𝑇 ) |
| 282 |
|
simpr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ¬ 𝑘 ≤ 𝑗 ) → ¬ 𝑘 ≤ 𝑗 ) |
| 283 |
|
zre |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℝ ) |
| 284 |
283
|
adantr |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 𝑗 ∈ ℝ ) |
| 285 |
284
|
ad2antlr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ¬ 𝑘 ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
| 286 |
|
zre |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) |
| 287 |
286
|
adantl |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
| 288 |
287
|
ad2antlr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ¬ 𝑘 ≤ 𝑗 ) → 𝑘 ∈ ℝ ) |
| 289 |
285 288
|
ltnled |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ¬ 𝑘 ≤ 𝑗 ) → ( 𝑗 < 𝑘 ↔ ¬ 𝑘 ≤ 𝑗 ) ) |
| 290 |
282 289
|
mpbird |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ¬ 𝑘 ≤ 𝑗 ) → 𝑗 < 𝑘 ) |
| 291 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 292 |
4 291
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 293 |
268 292
|
syl |
⊢ ( 𝜓 → 𝑇 ∈ ℝ ) |
| 294 |
293
|
ad2antrr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → 𝑇 ∈ ℝ ) |
| 295 |
287
|
adantl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑘 ∈ ℝ ) |
| 296 |
284
|
adantl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑗 ∈ ℝ ) |
| 297 |
295 296
|
resubcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑘 − 𝑗 ) ∈ ℝ ) |
| 298 |
293
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑇 ∈ ℝ ) |
| 299 |
297 298
|
remulcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑘 − 𝑗 ) · 𝑇 ) ∈ ℝ ) |
| 300 |
299
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → ( ( 𝑘 − 𝑗 ) · 𝑇 ) ∈ ℝ ) |
| 301 |
267
|
simprd |
⊢ ( 𝜓 → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ) |
| 302 |
301
|
simp2d |
⊢ ( 𝜓 → 𝑏 ∈ ℝ ) |
| 303 |
302
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑏 ∈ ℝ ) |
| 304 |
286
|
adantl |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
| 305 |
293
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → 𝑇 ∈ ℝ ) |
| 306 |
304 305
|
remulcld |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → ( 𝑘 · 𝑇 ) ∈ ℝ ) |
| 307 |
306
|
adantrl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑘 · 𝑇 ) ∈ ℝ ) |
| 308 |
303 307
|
readdcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 309 |
301
|
simp1d |
⊢ ( 𝜓 → 𝑎 ∈ ℝ ) |
| 310 |
309
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑎 ∈ ℝ ) |
| 311 |
283
|
adantl |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℝ ) |
| 312 |
293
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → 𝑇 ∈ ℝ ) |
| 313 |
311 312
|
remulcld |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 · 𝑇 ) ∈ ℝ ) |
| 314 |
313
|
adantrr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑗 · 𝑇 ) ∈ ℝ ) |
| 315 |
310 314
|
readdcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 316 |
308 315
|
resubcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∈ ℝ ) |
| 317 |
316
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∈ ℝ ) |
| 318 |
293
|
recnd |
⊢ ( 𝜓 → 𝑇 ∈ ℂ ) |
| 319 |
318
|
mullidd |
⊢ ( 𝜓 → ( 1 · 𝑇 ) = 𝑇 ) |
| 320 |
319
|
eqcomd |
⊢ ( 𝜓 → 𝑇 = ( 1 · 𝑇 ) ) |
| 321 |
320
|
ad2antrr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → 𝑇 = ( 1 · 𝑇 ) ) |
| 322 |
|
simpr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → 𝑗 < 𝑘 ) |
| 323 |
|
zltlem1 |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑗 < 𝑘 ↔ 𝑗 ≤ ( 𝑘 − 1 ) ) ) |
| 324 |
323
|
ad2antlr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → ( 𝑗 < 𝑘 ↔ 𝑗 ≤ ( 𝑘 − 1 ) ) ) |
| 325 |
322 324
|
mpbid |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → 𝑗 ≤ ( 𝑘 − 1 ) ) |
| 326 |
284
|
ad2antlr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 ≤ ( 𝑘 − 1 ) ) → 𝑗 ∈ ℝ ) |
| 327 |
|
peano2rem |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 − 1 ) ∈ ℝ ) |
| 328 |
295 327
|
syl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 329 |
328
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 ≤ ( 𝑘 − 1 ) ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 330 |
|
1re |
⊢ 1 ∈ ℝ |
| 331 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 1 − 𝑗 ) ∈ ℝ ) |
| 332 |
330 326 331
|
sylancr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 ≤ ( 𝑘 − 1 ) ) → ( 1 − 𝑗 ) ∈ ℝ ) |
| 333 |
|
simpr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 ≤ ( 𝑘 − 1 ) ) → 𝑗 ≤ ( 𝑘 − 1 ) ) |
| 334 |
326 329 332 333
|
leadd1dd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 ≤ ( 𝑘 − 1 ) ) → ( 𝑗 + ( 1 − 𝑗 ) ) ≤ ( ( 𝑘 − 1 ) + ( 1 − 𝑗 ) ) ) |
| 335 |
|
zcn |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℂ ) |
| 336 |
335
|
adantr |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 𝑗 ∈ ℂ ) |
| 337 |
|
1cnd |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 1 ∈ ℂ ) |
| 338 |
336 337
|
pncan3d |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑗 + ( 1 − 𝑗 ) ) = 1 ) |
| 339 |
338
|
ad2antlr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 ≤ ( 𝑘 − 1 ) ) → ( 𝑗 + ( 1 − 𝑗 ) ) = 1 ) |
| 340 |
|
zcn |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℂ ) |
| 341 |
340
|
adantl |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℂ ) |
| 342 |
341 337 336
|
npncand |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 − 1 ) + ( 1 − 𝑗 ) ) = ( 𝑘 − 𝑗 ) ) |
| 343 |
342
|
ad2antlr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 ≤ ( 𝑘 − 1 ) ) → ( ( 𝑘 − 1 ) + ( 1 − 𝑗 ) ) = ( 𝑘 − 𝑗 ) ) |
| 344 |
334 339 343
|
3brtr3d |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 ≤ ( 𝑘 − 1 ) ) → 1 ≤ ( 𝑘 − 𝑗 ) ) |
| 345 |
325 344
|
syldan |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → 1 ≤ ( 𝑘 − 𝑗 ) ) |
| 346 |
330
|
a1i |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → 1 ∈ ℝ ) |
| 347 |
297
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → ( 𝑘 − 𝑗 ) ∈ ℝ ) |
| 348 |
1 2
|
posdifd |
⊢ ( 𝜑 → ( 𝐵 < 𝐶 ↔ 0 < ( 𝐶 − 𝐵 ) ) ) |
| 349 |
3 348
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐶 − 𝐵 ) ) |
| 350 |
349 4
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑇 ) |
| 351 |
292 350
|
elrpd |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
| 352 |
268 351
|
syl |
⊢ ( 𝜓 → 𝑇 ∈ ℝ+ ) |
| 353 |
352
|
ad2antrr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → 𝑇 ∈ ℝ+ ) |
| 354 |
346 347 353
|
lemul1d |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → ( 1 ≤ ( 𝑘 − 𝑗 ) ↔ ( 1 · 𝑇 ) ≤ ( ( 𝑘 − 𝑗 ) · 𝑇 ) ) ) |
| 355 |
345 354
|
mpbid |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → ( 1 · 𝑇 ) ≤ ( ( 𝑘 − 𝑗 ) · 𝑇 ) ) |
| 356 |
321 355
|
eqbrtrd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → 𝑇 ≤ ( ( 𝑘 − 𝑗 ) · 𝑇 ) ) |
| 357 |
302 309
|
resubcld |
⊢ ( 𝜓 → ( 𝑏 − 𝑎 ) ∈ ℝ ) |
| 358 |
301
|
simp3d |
⊢ ( 𝜓 → 𝑎 < 𝑏 ) |
| 359 |
309 302
|
posdifd |
⊢ ( 𝜓 → ( 𝑎 < 𝑏 ↔ 0 < ( 𝑏 − 𝑎 ) ) ) |
| 360 |
358 359
|
mpbid |
⊢ ( 𝜓 → 0 < ( 𝑏 − 𝑎 ) ) |
| 361 |
357 360
|
elrpd |
⊢ ( 𝜓 → ( 𝑏 − 𝑎 ) ∈ ℝ+ ) |
| 362 |
361
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑏 − 𝑎 ) ∈ ℝ+ ) |
| 363 |
299 362
|
ltaddrp2d |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑘 − 𝑗 ) · 𝑇 ) < ( ( 𝑏 − 𝑎 ) + ( ( 𝑘 − 𝑗 ) · 𝑇 ) ) ) |
| 364 |
302
|
recnd |
⊢ ( 𝜓 → 𝑏 ∈ ℂ ) |
| 365 |
364
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑏 ∈ ℂ ) |
| 366 |
306
|
recnd |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → ( 𝑘 · 𝑇 ) ∈ ℂ ) |
| 367 |
366
|
adantrl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑘 · 𝑇 ) ∈ ℂ ) |
| 368 |
309
|
recnd |
⊢ ( 𝜓 → 𝑎 ∈ ℂ ) |
| 369 |
368
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑎 ∈ ℂ ) |
| 370 |
313
|
recnd |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 · 𝑇 ) ∈ ℂ ) |
| 371 |
370
|
adantrr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑗 · 𝑇 ) ∈ ℂ ) |
| 372 |
365 367 369 371
|
addsub4d |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( 𝑏 − 𝑎 ) + ( ( 𝑘 · 𝑇 ) − ( 𝑗 · 𝑇 ) ) ) ) |
| 373 |
340
|
ad2antll |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑘 ∈ ℂ ) |
| 374 |
335
|
ad2antrl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑗 ∈ ℂ ) |
| 375 |
318
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑇 ∈ ℂ ) |
| 376 |
373 374 375
|
subdird |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑘 − 𝑗 ) · 𝑇 ) = ( ( 𝑘 · 𝑇 ) − ( 𝑗 · 𝑇 ) ) ) |
| 377 |
376
|
eqcomd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑘 · 𝑇 ) − ( 𝑗 · 𝑇 ) ) = ( ( 𝑘 − 𝑗 ) · 𝑇 ) ) |
| 378 |
377
|
oveq2d |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑏 − 𝑎 ) + ( ( 𝑘 · 𝑇 ) − ( 𝑗 · 𝑇 ) ) ) = ( ( 𝑏 − 𝑎 ) + ( ( 𝑘 − 𝑗 ) · 𝑇 ) ) ) |
| 379 |
372 378
|
eqtr2d |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑏 − 𝑎 ) + ( ( 𝑘 − 𝑗 ) · 𝑇 ) ) = ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 380 |
363 379
|
breqtrd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑘 − 𝑗 ) · 𝑇 ) < ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 381 |
380
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → ( ( 𝑘 − 𝑗 ) · 𝑇 ) < ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 382 |
294 300 317 356 381
|
lelttrd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → 𝑇 < ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 383 |
294 317
|
ltnled |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → ( 𝑇 < ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ↔ ¬ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ≤ 𝑇 ) ) |
| 384 |
382 383
|
mpbid |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑗 < 𝑘 ) → ¬ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ≤ 𝑇 ) |
| 385 |
290 384
|
syldan |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ¬ 𝑘 ≤ 𝑗 ) → ¬ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ≤ 𝑇 ) |
| 386 |
385
|
3adantl3 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ 𝑘 ≤ 𝑗 ) → ¬ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ≤ 𝑇 ) |
| 387 |
281 386
|
condan |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝑘 ≤ 𝑗 ) |
| 388 |
190 193
|
sselid |
⊢ ( 𝜑 → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
| 389 |
12 388
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 390 |
268 389
|
syl |
⊢ ( 𝜓 → 𝐸 ∈ ℝ ) |
| 391 |
390
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ∈ ℝ ) |
| 392 |
391
|
ad2antrr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ∈ ℝ ) |
| 393 |
293
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝑇 ∈ ℝ ) |
| 394 |
393
|
ad2antrr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝑇 ∈ ℝ ) |
| 395 |
284 287
|
resubcld |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑗 − 𝑘 ) ∈ ℝ ) |
| 396 |
395
|
adantl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑗 − 𝑘 ) ∈ ℝ ) |
| 397 |
396 298
|
remulcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑗 − 𝑘 ) · 𝑇 ) ∈ ℝ ) |
| 398 |
397
|
3adant3 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑗 − 𝑘 ) · 𝑇 ) ∈ ℝ ) |
| 399 |
398
|
ad2antrr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝑗 − 𝑘 ) · 𝑇 ) ∈ ℝ ) |
| 400 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
| 401 |
7 8
|
jca |
⊢ ( 𝜑 → ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) |
| 402 |
400 401 3
|
3jca |
⊢ ( 𝜑 → ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝐵 < 𝐶 ) ) |
| 403 |
|
eleq1 |
⊢ ( 𝑑 = 𝐶 → ( 𝑑 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
| 404 |
403
|
anbi2d |
⊢ ( 𝑑 = 𝐶 → ( ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) ) |
| 405 |
|
breq2 |
⊢ ( 𝑑 = 𝐶 → ( 𝐵 < 𝑑 ↔ 𝐵 < 𝐶 ) ) |
| 406 |
404 405
|
3anbi23d |
⊢ ( 𝑑 = 𝐶 → ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝐵 < 𝑑 ) ↔ ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝐵 < 𝐶 ) ) ) |
| 407 |
|
oveq1 |
⊢ ( 𝑑 = 𝐶 → ( 𝑑 − 𝐵 ) = ( 𝐶 − 𝐵 ) ) |
| 408 |
407
|
breq2d |
⊢ ( 𝑑 = 𝐶 → ( 𝐸 ≤ ( 𝑑 − 𝐵 ) ↔ 𝐸 ≤ ( 𝐶 − 𝐵 ) ) ) |
| 409 |
406 408
|
imbi12d |
⊢ ( 𝑑 = 𝐶 → ( ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝐵 < 𝑑 ) → 𝐸 ≤ ( 𝑑 − 𝐵 ) ) ↔ ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝐵 < 𝐶 ) → 𝐸 ≤ ( 𝐶 − 𝐵 ) ) ) ) |
| 410 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝐵 < 𝑑 ) → 𝐵 ∈ 𝐴 ) |
| 411 |
|
eleq1 |
⊢ ( 𝑐 = 𝐵 → ( 𝑐 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
| 412 |
411
|
anbi1d |
⊢ ( 𝑐 = 𝐵 → ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) ) |
| 413 |
|
breq1 |
⊢ ( 𝑐 = 𝐵 → ( 𝑐 < 𝑑 ↔ 𝐵 < 𝑑 ) ) |
| 414 |
412 413
|
3anbi23d |
⊢ ( 𝑐 = 𝐵 → ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) ↔ ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝐵 < 𝑑 ) ) ) |
| 415 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( 𝑑 − 𝑐 ) = ( 𝑑 − 𝐵 ) ) |
| 416 |
415
|
breq2d |
⊢ ( 𝑐 = 𝐵 → ( 𝐸 ≤ ( 𝑑 − 𝑐 ) ↔ 𝐸 ≤ ( 𝑑 − 𝐵 ) ) ) |
| 417 |
414 416
|
imbi12d |
⊢ ( 𝑐 = 𝐵 → ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝐸 ≤ ( 𝑑 − 𝑐 ) ) ↔ ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝐵 < 𝑑 ) → 𝐸 ≤ ( 𝑑 − 𝐵 ) ) ) ) |
| 418 |
190
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝑅 ⊆ ℝ ) |
| 419 |
|
0re |
⊢ 0 ∈ ℝ |
| 420 |
11
|
eleq2i |
⊢ ( 𝑦 ∈ 𝑅 ↔ 𝑦 ∈ ran ( 𝐷 ↾ 𝐼 ) ) |
| 421 |
420
|
biimpi |
⊢ ( 𝑦 ∈ 𝑅 → 𝑦 ∈ ran ( 𝐷 ↾ 𝐼 ) ) |
| 422 |
421
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑅 ) → 𝑦 ∈ ran ( 𝐷 ↾ 𝐼 ) ) |
| 423 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑅 ) → ( 𝐷 ↾ 𝐼 ) Fn 𝐼 ) |
| 424 |
|
fvelrnb |
⊢ ( ( 𝐷 ↾ 𝐼 ) Fn 𝐼 → ( 𝑦 ∈ ran ( 𝐷 ↾ 𝐼 ) ↔ ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ) ) |
| 425 |
423 424
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑦 ∈ ran ( 𝐷 ↾ 𝐼 ) ↔ ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ) ) |
| 426 |
422 425
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑅 ) → ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ) |
| 427 |
127
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) ) |
| 428 |
427
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ) → 0 ≤ ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) ) |
| 429 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ) → ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ) |
| 430 |
428 429
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ) → 0 ≤ 𝑦 ) |
| 431 |
430
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 → ( ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 → 0 ≤ 𝑦 ) ) ) |
| 432 |
431
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑥 ∈ 𝐼 → ( ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 → 0 ≤ 𝑦 ) ) ) |
| 433 |
432
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑅 ) → ( ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 → 0 ≤ 𝑦 ) ) |
| 434 |
426 433
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑅 ) → 0 ≤ 𝑦 ) |
| 435 |
434
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑅 0 ≤ 𝑦 ) |
| 436 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦 ) ) |
| 437 |
436
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ 𝑅 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑅 0 ≤ 𝑦 ) ) |
| 438 |
437
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑅 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑅 𝑥 ≤ 𝑦 ) |
| 439 |
419 435 438
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑅 𝑥 ≤ 𝑦 ) |
| 440 |
439
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑅 𝑥 ≤ 𝑦 ) |
| 441 |
|
pm3.22 |
⊢ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) → ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) |
| 442 |
|
opelxp |
⊢ ( 〈 𝑑 , 𝑐 〉 ∈ ( 𝐴 × 𝐴 ) ↔ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) |
| 443 |
441 442
|
sylibr |
⊢ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) → 〈 𝑑 , 𝑐 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 444 |
443
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 〈 𝑑 , 𝑐 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 445 |
5 58
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 446 |
445
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ ℝ ) |
| 447 |
446
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → 𝑐 ∈ ℝ ) |
| 448 |
447
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝑐 ∈ ℝ ) |
| 449 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝑐 < 𝑑 ) |
| 450 |
448 449
|
gtned |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝑑 ≠ 𝑐 ) |
| 451 |
450
|
neneqd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → ¬ 𝑑 = 𝑐 ) |
| 452 |
|
df-br |
⊢ ( 𝑑 I 𝑐 ↔ 〈 𝑑 , 𝑐 〉 ∈ I ) |
| 453 |
|
vex |
⊢ 𝑐 ∈ V |
| 454 |
453
|
ideq |
⊢ ( 𝑑 I 𝑐 ↔ 𝑑 = 𝑐 ) |
| 455 |
452 454
|
bitr3i |
⊢ ( 〈 𝑑 , 𝑐 〉 ∈ I ↔ 𝑑 = 𝑐 ) |
| 456 |
451 455
|
sylnibr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → ¬ 〈 𝑑 , 𝑐 〉 ∈ I ) |
| 457 |
444 456
|
eldifd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 〈 𝑑 , 𝑐 〉 ∈ ( ( 𝐴 × 𝐴 ) ∖ I ) ) |
| 458 |
457 10
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 〈 𝑑 , 𝑐 〉 ∈ 𝐼 ) |
| 459 |
448 449
|
ltned |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝑐 ≠ 𝑑 ) |
| 460 |
146
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → ( 𝐷 ↾ 𝐼 ) = ( ( abs ∘ − ) ↾ 𝐼 ) ) |
| 461 |
460
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → ( ( 𝐷 ↾ 𝐼 ) ‘ 〈 𝑑 , 𝑐 〉 ) = ( ( ( abs ∘ − ) ↾ 𝐼 ) ‘ 〈 𝑑 , 𝑐 〉 ) ) |
| 462 |
443
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → 〈 𝑑 , 𝑐 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 463 |
|
necom |
⊢ ( 𝑐 ≠ 𝑑 ↔ 𝑑 ≠ 𝑐 ) |
| 464 |
463
|
biimpi |
⊢ ( 𝑐 ≠ 𝑑 → 𝑑 ≠ 𝑐 ) |
| 465 |
464
|
neneqd |
⊢ ( 𝑐 ≠ 𝑑 → ¬ 𝑑 = 𝑐 ) |
| 466 |
465
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → ¬ 𝑑 = 𝑐 ) |
| 467 |
466 455
|
sylnibr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → ¬ 〈 𝑑 , 𝑐 〉 ∈ I ) |
| 468 |
462 467
|
eldifd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → 〈 𝑑 , 𝑐 〉 ∈ ( ( 𝐴 × 𝐴 ) ∖ I ) ) |
| 469 |
468 10
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → 〈 𝑑 , 𝑐 〉 ∈ 𝐼 ) |
| 470 |
|
fvres |
⊢ ( 〈 𝑑 , 𝑐 〉 ∈ 𝐼 → ( ( ( abs ∘ − ) ↾ 𝐼 ) ‘ 〈 𝑑 , 𝑐 〉 ) = ( ( abs ∘ − ) ‘ 〈 𝑑 , 𝑐 〉 ) ) |
| 471 |
469 470
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → ( ( ( abs ∘ − ) ↾ 𝐼 ) ‘ 〈 𝑑 , 𝑐 〉 ) = ( ( abs ∘ − ) ‘ 〈 𝑑 , 𝑐 〉 ) ) |
| 472 |
|
simp1 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → 𝜑 ) |
| 473 |
472 469
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → ( 𝜑 ∧ 〈 𝑑 , 𝑐 〉 ∈ 𝐼 ) ) |
| 474 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝑑 , 𝑐 〉 → ( 𝑥 ∈ 𝐼 ↔ 〈 𝑑 , 𝑐 〉 ∈ 𝐼 ) ) |
| 475 |
474
|
anbi2d |
⊢ ( 𝑥 = 〈 𝑑 , 𝑐 〉 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ↔ ( 𝜑 ∧ 〈 𝑑 , 𝑐 〉 ∈ 𝐼 ) ) ) |
| 476 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝑑 , 𝑐 〉 → ( 𝑥 ∈ dom − ↔ 〈 𝑑 , 𝑐 〉 ∈ dom − ) ) |
| 477 |
475 476
|
imbi12d |
⊢ ( 𝑥 = 〈 𝑑 , 𝑐 〉 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ dom − ) ↔ ( ( 𝜑 ∧ 〈 𝑑 , 𝑐 〉 ∈ 𝐼 ) → 〈 𝑑 , 𝑐 〉 ∈ dom − ) ) ) |
| 478 |
477 76
|
vtoclg |
⊢ ( 〈 𝑑 , 𝑐 〉 ∈ 𝐼 → ( ( 𝜑 ∧ 〈 𝑑 , 𝑐 〉 ∈ 𝐼 ) → 〈 𝑑 , 𝑐 〉 ∈ dom − ) ) |
| 479 |
469 473 478
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → 〈 𝑑 , 𝑐 〉 ∈ dom − ) |
| 480 |
|
fvco |
⊢ ( ( Fun − ∧ 〈 𝑑 , 𝑐 〉 ∈ dom − ) → ( ( abs ∘ − ) ‘ 〈 𝑑 , 𝑐 〉 ) = ( abs ‘ ( − ‘ 〈 𝑑 , 𝑐 〉 ) ) ) |
| 481 |
73 479 480
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → ( ( abs ∘ − ) ‘ 〈 𝑑 , 𝑐 〉 ) = ( abs ‘ ( − ‘ 〈 𝑑 , 𝑐 〉 ) ) ) |
| 482 |
|
df-ov |
⊢ ( 𝑑 − 𝑐 ) = ( − ‘ 〈 𝑑 , 𝑐 〉 ) |
| 483 |
482
|
eqcomi |
⊢ ( − ‘ 〈 𝑑 , 𝑐 〉 ) = ( 𝑑 − 𝑐 ) |
| 484 |
483
|
fveq2i |
⊢ ( abs ‘ ( − ‘ 〈 𝑑 , 𝑐 〉 ) ) = ( abs ‘ ( 𝑑 − 𝑐 ) ) |
| 485 |
481 484
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → ( ( abs ∘ − ) ‘ 〈 𝑑 , 𝑐 〉 ) = ( abs ‘ ( 𝑑 − 𝑐 ) ) ) |
| 486 |
461 471 485
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑑 ) → ( ( 𝐷 ↾ 𝐼 ) ‘ 〈 𝑑 , 𝑐 〉 ) = ( abs ‘ ( 𝑑 − 𝑐 ) ) ) |
| 487 |
459 486
|
syld3an3 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → ( ( 𝐷 ↾ 𝐼 ) ‘ 〈 𝑑 , 𝑐 〉 ) = ( abs ‘ ( 𝑑 − 𝑐 ) ) ) |
| 488 |
445
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ∈ ℝ ) |
| 489 |
488
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → 𝑑 ∈ ℝ ) |
| 490 |
489
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝑑 ∈ ℝ ) |
| 491 |
448 490 449
|
ltled |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝑐 ≤ 𝑑 ) |
| 492 |
448 490 491
|
abssubge0d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → ( abs ‘ ( 𝑑 − 𝑐 ) ) = ( 𝑑 − 𝑐 ) ) |
| 493 |
487 492
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → ( ( 𝐷 ↾ 𝐼 ) ‘ 〈 𝑑 , 𝑐 〉 ) = ( 𝑑 − 𝑐 ) ) |
| 494 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝑑 , 𝑐 〉 → ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( ( 𝐷 ↾ 𝐼 ) ‘ 〈 𝑑 , 𝑐 〉 ) ) |
| 495 |
494
|
eqeq1d |
⊢ ( 𝑥 = 〈 𝑑 , 𝑐 〉 → ( ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( 𝑑 − 𝑐 ) ↔ ( ( 𝐷 ↾ 𝐼 ) ‘ 〈 𝑑 , 𝑐 〉 ) = ( 𝑑 − 𝑐 ) ) ) |
| 496 |
495
|
rspcev |
⊢ ( ( 〈 𝑑 , 𝑐 〉 ∈ 𝐼 ∧ ( ( 𝐷 ↾ 𝐼 ) ‘ 〈 𝑑 , 𝑐 〉 ) = ( 𝑑 − 𝑐 ) ) → ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( 𝑑 − 𝑐 ) ) |
| 497 |
458 493 496
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( 𝑑 − 𝑐 ) ) |
| 498 |
489 447
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑑 − 𝑐 ) ∈ ℝ ) |
| 499 |
|
elex |
⊢ ( ( 𝑑 − 𝑐 ) ∈ ℝ → ( 𝑑 − 𝑐 ) ∈ V ) |
| 500 |
498 499
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑑 − 𝑐 ) ∈ V ) |
| 501 |
500
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → ( 𝑑 − 𝑐 ) ∈ V ) |
| 502 |
|
simp1 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝜑 ) |
| 503 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑑 − 𝑐 ) → ( 𝑦 ∈ ran ( 𝐷 ↾ 𝐼 ) ↔ ( 𝑑 − 𝑐 ) ∈ ran ( 𝐷 ↾ 𝐼 ) ) ) |
| 504 |
|
eqeq2 |
⊢ ( 𝑦 = ( 𝑑 − 𝑐 ) → ( ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ↔ ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( 𝑑 − 𝑐 ) ) ) |
| 505 |
504
|
rexbidv |
⊢ ( 𝑦 = ( 𝑑 − 𝑐 ) → ( ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( 𝑑 − 𝑐 ) ) ) |
| 506 |
503 505
|
bibi12d |
⊢ ( 𝑦 = ( 𝑑 − 𝑐 ) → ( ( 𝑦 ∈ ran ( 𝐷 ↾ 𝐼 ) ↔ ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ) ↔ ( ( 𝑑 − 𝑐 ) ∈ ran ( 𝐷 ↾ 𝐼 ) ↔ ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( 𝑑 − 𝑐 ) ) ) ) |
| 507 |
506
|
imbi2d |
⊢ ( 𝑦 = ( 𝑑 − 𝑐 ) → ( ( 𝜑 → ( 𝑦 ∈ ran ( 𝐷 ↾ 𝐼 ) ↔ ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ) ) ↔ ( 𝜑 → ( ( 𝑑 − 𝑐 ) ∈ ran ( 𝐷 ↾ 𝐼 ) ↔ ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( 𝑑 − 𝑐 ) ) ) ) ) |
| 508 |
67 424
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝐷 ↾ 𝐼 ) ↔ ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = 𝑦 ) ) |
| 509 |
507 508
|
vtoclg |
⊢ ( ( 𝑑 − 𝑐 ) ∈ V → ( 𝜑 → ( ( 𝑑 − 𝑐 ) ∈ ran ( 𝐷 ↾ 𝐼 ) ↔ ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( 𝑑 − 𝑐 ) ) ) ) |
| 510 |
501 502 509
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → ( ( 𝑑 − 𝑐 ) ∈ ran ( 𝐷 ↾ 𝐼 ) ↔ ∃ 𝑥 ∈ 𝐼 ( ( 𝐷 ↾ 𝐼 ) ‘ 𝑥 ) = ( 𝑑 − 𝑐 ) ) ) |
| 511 |
497 510
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → ( 𝑑 − 𝑐 ) ∈ ran ( 𝐷 ↾ 𝐼 ) ) |
| 512 |
511 11
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → ( 𝑑 − 𝑐 ) ∈ 𝑅 ) |
| 513 |
|
infrelb |
⊢ ( ( 𝑅 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑅 𝑥 ≤ 𝑦 ∧ ( 𝑑 − 𝑐 ) ∈ 𝑅 ) → inf ( 𝑅 , ℝ , < ) ≤ ( 𝑑 − 𝑐 ) ) |
| 514 |
418 440 512 513
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → inf ( 𝑅 , ℝ , < ) ≤ ( 𝑑 − 𝑐 ) ) |
| 515 |
12 514
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝐸 ≤ ( 𝑑 − 𝑐 ) ) |
| 516 |
417 515
|
vtoclg |
⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝐵 < 𝑑 ) → 𝐸 ≤ ( 𝑑 − 𝐵 ) ) ) |
| 517 |
410 516
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝐵 < 𝑑 ) → 𝐸 ≤ ( 𝑑 − 𝐵 ) ) |
| 518 |
409 517
|
vtoclg |
⊢ ( 𝐶 ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝐵 < 𝐶 ) → 𝐸 ≤ ( 𝐶 − 𝐵 ) ) ) |
| 519 |
8 402 518
|
sylc |
⊢ ( 𝜑 → 𝐸 ≤ ( 𝐶 − 𝐵 ) ) |
| 520 |
519 4
|
breqtrrdi |
⊢ ( 𝜑 → 𝐸 ≤ 𝑇 ) |
| 521 |
268 520
|
syl |
⊢ ( 𝜓 → 𝐸 ≤ 𝑇 ) |
| 522 |
521
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ 𝑇 ) |
| 523 |
522
|
ad2antrr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ 𝑇 ) |
| 524 |
364
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
| 525 |
524 366
|
pncan2d |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) = ( 𝑘 · 𝑇 ) ) |
| 526 |
525
|
oveq1d |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) = ( ( 𝑘 · 𝑇 ) / 𝑇 ) ) |
| 527 |
340
|
adantl |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℂ ) |
| 528 |
318
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → 𝑇 ∈ ℂ ) |
| 529 |
419
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 530 |
529 350
|
gtned |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
| 531 |
268 530
|
syl |
⊢ ( 𝜓 → 𝑇 ≠ 0 ) |
| 532 |
531
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → 𝑇 ≠ 0 ) |
| 533 |
527 528 532
|
divcan4d |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 · 𝑇 ) / 𝑇 ) = 𝑘 ) |
| 534 |
526 533
|
eqtr2d |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ) → 𝑘 = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ) |
| 535 |
534
|
adantrl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑘 = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ) |
| 536 |
535
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝑘 = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ) |
| 537 |
|
oveq1 |
⊢ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) = ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) ) |
| 538 |
537
|
oveq1d |
⊢ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ) |
| 539 |
538
|
adantl |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ) |
| 540 |
368
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → 𝑎 ∈ ℂ ) |
| 541 |
364
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
| 542 |
540 370 541
|
addsubd |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) = ( ( 𝑎 − 𝑏 ) + ( 𝑗 · 𝑇 ) ) ) |
| 543 |
540 541
|
subcld |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( 𝑎 − 𝑏 ) ∈ ℂ ) |
| 544 |
543 370
|
addcomd |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑎 − 𝑏 ) + ( 𝑗 · 𝑇 ) ) = ( ( 𝑗 · 𝑇 ) + ( 𝑎 − 𝑏 ) ) ) |
| 545 |
542 544
|
eqtrd |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) = ( ( 𝑗 · 𝑇 ) + ( 𝑎 − 𝑏 ) ) ) |
| 546 |
545
|
oveq1d |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) = ( ( ( 𝑗 · 𝑇 ) + ( 𝑎 − 𝑏 ) ) / 𝑇 ) ) |
| 547 |
318
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → 𝑇 ∈ ℂ ) |
| 548 |
531
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → 𝑇 ≠ 0 ) |
| 549 |
370 543 547 548
|
divdird |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝑗 · 𝑇 ) + ( 𝑎 − 𝑏 ) ) / 𝑇 ) = ( ( ( 𝑗 · 𝑇 ) / 𝑇 ) + ( ( 𝑎 − 𝑏 ) / 𝑇 ) ) ) |
| 550 |
335
|
adantl |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℂ ) |
| 551 |
550 547 548
|
divcan4d |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑗 · 𝑇 ) / 𝑇 ) = 𝑗 ) |
| 552 |
551
|
oveq1d |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝑗 · 𝑇 ) / 𝑇 ) + ( ( 𝑎 − 𝑏 ) / 𝑇 ) ) = ( 𝑗 + ( ( 𝑎 − 𝑏 ) / 𝑇 ) ) ) |
| 553 |
546 549 552
|
3eqtrd |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) = ( 𝑗 + ( ( 𝑎 − 𝑏 ) / 𝑇 ) ) ) |
| 554 |
553
|
adantrr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) = ( 𝑗 + ( ( 𝑎 − 𝑏 ) / 𝑇 ) ) ) |
| 555 |
554
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) = ( 𝑗 + ( ( 𝑎 − 𝑏 ) / 𝑇 ) ) ) |
| 556 |
536 539 555
|
3eqtr2d |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝑘 = ( 𝑗 + ( ( 𝑎 − 𝑏 ) / 𝑇 ) ) ) |
| 557 |
309 302
|
resubcld |
⊢ ( 𝜓 → ( 𝑎 − 𝑏 ) ∈ ℝ ) |
| 558 |
309 302
|
sublt0d |
⊢ ( 𝜓 → ( ( 𝑎 − 𝑏 ) < 0 ↔ 𝑎 < 𝑏 ) ) |
| 559 |
358 558
|
mpbird |
⊢ ( 𝜓 → ( 𝑎 − 𝑏 ) < 0 ) |
| 560 |
557 352 559
|
divlt0gt0d |
⊢ ( 𝜓 → ( ( 𝑎 − 𝑏 ) / 𝑇 ) < 0 ) |
| 561 |
560
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑎 − 𝑏 ) / 𝑇 ) < 0 ) |
| 562 |
335
|
subidd |
⊢ ( 𝑗 ∈ ℤ → ( 𝑗 − 𝑗 ) = 0 ) |
| 563 |
562
|
eqcomd |
⊢ ( 𝑗 ∈ ℤ → 0 = ( 𝑗 − 𝑗 ) ) |
| 564 |
563
|
adantl |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → 0 = ( 𝑗 − 𝑗 ) ) |
| 565 |
561 564
|
breqtrd |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑎 − 𝑏 ) / 𝑇 ) < ( 𝑗 − 𝑗 ) ) |
| 566 |
557 293 531
|
redivcld |
⊢ ( 𝜓 → ( ( 𝑎 − 𝑏 ) / 𝑇 ) ∈ ℝ ) |
| 567 |
566
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑎 − 𝑏 ) / 𝑇 ) ∈ ℝ ) |
| 568 |
311 567 311
|
ltaddsub2d |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑗 + ( ( 𝑎 − 𝑏 ) / 𝑇 ) ) < 𝑗 ↔ ( ( 𝑎 − 𝑏 ) / 𝑇 ) < ( 𝑗 − 𝑗 ) ) ) |
| 569 |
565 568
|
mpbird |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 + ( ( 𝑎 − 𝑏 ) / 𝑇 ) ) < 𝑗 ) |
| 570 |
569
|
adantrr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑗 + ( ( 𝑎 − 𝑏 ) / 𝑇 ) ) < 𝑗 ) |
| 571 |
570
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑗 + ( ( 𝑎 − 𝑏 ) / 𝑇 ) ) < 𝑗 ) |
| 572 |
556 571
|
eqbrtrd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝑘 < 𝑗 ) |
| 573 |
320
|
ad2antrr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 < 𝑗 ) → 𝑇 = ( 1 · 𝑇 ) ) |
| 574 |
|
simpr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ) → 𝑘 < 𝑗 ) |
| 575 |
|
simplr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ) → 𝑘 ∈ ℤ ) |
| 576 |
|
simpll |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ) → 𝑗 ∈ ℤ ) |
| 577 |
|
zltp1le |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑘 < 𝑗 ↔ ( 𝑘 + 1 ) ≤ 𝑗 ) ) |
| 578 |
575 576 577
|
syl2anc |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ) → ( 𝑘 < 𝑗 ↔ ( 𝑘 + 1 ) ≤ 𝑗 ) ) |
| 579 |
574 578
|
mpbid |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ) → ( 𝑘 + 1 ) ≤ 𝑗 ) |
| 580 |
286
|
ad2antlr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ) → 𝑘 ∈ ℝ ) |
| 581 |
330
|
a1i |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ) → 1 ∈ ℝ ) |
| 582 |
283
|
ad2antrr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ) → 𝑗 ∈ ℝ ) |
| 583 |
580 581 582
|
leaddsub2d |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ) → ( ( 𝑘 + 1 ) ≤ 𝑗 ↔ 1 ≤ ( 𝑗 − 𝑘 ) ) ) |
| 584 |
579 583
|
mpbid |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ) → 1 ≤ ( 𝑗 − 𝑘 ) ) |
| 585 |
584
|
adantll |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 < 𝑗 ) → 1 ≤ ( 𝑗 − 𝑘 ) ) |
| 586 |
330
|
a1i |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 < 𝑗 ) → 1 ∈ ℝ ) |
| 587 |
395
|
ad2antlr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 < 𝑗 ) → ( 𝑗 − 𝑘 ) ∈ ℝ ) |
| 588 |
352
|
ad2antrr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 < 𝑗 ) → 𝑇 ∈ ℝ+ ) |
| 589 |
586 587 588
|
lemul1d |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 < 𝑗 ) → ( 1 ≤ ( 𝑗 − 𝑘 ) ↔ ( 1 · 𝑇 ) ≤ ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 590 |
585 589
|
mpbid |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 < 𝑗 ) → ( 1 · 𝑇 ) ≤ ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) |
| 591 |
573 590
|
eqbrtrd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 < 𝑗 ) → 𝑇 ≤ ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) |
| 592 |
572 591
|
syldan |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝑇 ≤ ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) |
| 593 |
592
|
adantlr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝑇 ≤ ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) |
| 594 |
593
|
3adantll3 |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝑇 ≤ ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) |
| 595 |
392 394 399 523 594
|
letrd |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) |
| 596 |
|
oveq2 |
⊢ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ) |
| 597 |
596
|
oveq1d |
⊢ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 598 |
597
|
adantl |
⊢ ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 599 |
268 445
|
syl |
⊢ ( 𝜓 → 𝐴 ⊆ ℝ ) |
| 600 |
599
|
sselda |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 601 |
600
|
adantrl |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 602 |
601
|
recnd |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℂ ) |
| 603 |
602
|
subidd |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) = 0 ) |
| 604 |
603
|
oveq1d |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( 0 + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 605 |
604
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( 0 + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 606 |
598 605
|
eqtrd |
⊢ ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( 0 + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 607 |
606
|
3adantl2 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( 0 + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 608 |
607
|
adantlr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( 0 + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 609 |
374 373
|
subcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑗 − 𝑘 ) ∈ ℂ ) |
| 610 |
609 375
|
mulcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑗 − 𝑘 ) · 𝑇 ) ∈ ℂ ) |
| 611 |
610
|
addlidd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 0 + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) |
| 612 |
611
|
3adant3 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 0 + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) |
| 613 |
612
|
ad2antrr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 0 + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) |
| 614 |
608 613
|
eqtr2d |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝑗 − 𝑘 ) · 𝑇 ) = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 615 |
595 614
|
breqtrd |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 616 |
615
|
adantlr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 617 |
391
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ∈ ℝ ) |
| 618 |
599
|
sselda |
⊢ ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 619 |
618
|
adantrr |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 620 |
601 619
|
resubcld |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∈ ℝ ) |
| 621 |
620
|
3adant2 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∈ ℝ ) |
| 622 |
621
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∈ ℝ ) |
| 623 |
621 398
|
readdcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ∈ ℝ ) |
| 624 |
623
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ∈ ℝ ) |
| 625 |
268
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑘 ≤ 𝑗 ) → 𝜑 ) |
| 626 |
625
|
3ad2antl1 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → 𝜑 ) |
| 627 |
626
|
ad2antrr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝜑 ) |
| 628 |
|
simpl3 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 629 |
628
|
ad2antrr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 630 |
|
simplr |
⊢ ( ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) |
| 631 |
619
|
ad2antrr |
⊢ ( ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 632 |
601
|
ad2antrr |
⊢ ( ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 633 |
631 632
|
lenltd |
⊢ ( ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ↔ ¬ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 634 |
630 633
|
mpbid |
⊢ ( ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ¬ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 635 |
|
eqcom |
⊢ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ↔ ( 𝑏 + ( 𝑘 · 𝑇 ) ) = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 636 |
635
|
notbii |
⊢ ( ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ↔ ¬ ( 𝑏 + ( 𝑘 · 𝑇 ) ) = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 637 |
636
|
biimpi |
⊢ ( ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ¬ ( 𝑏 + ( 𝑘 · 𝑇 ) ) = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 638 |
637
|
adantl |
⊢ ( ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ¬ ( 𝑏 + ( 𝑘 · 𝑇 ) ) = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 639 |
|
ioran |
⊢ ( ¬ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∨ ( 𝑏 + ( 𝑘 · 𝑇 ) ) = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ↔ ( ¬ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∧ ¬ ( 𝑏 + ( 𝑘 · 𝑇 ) ) = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 640 |
634 638 639
|
sylanbrc |
⊢ ( ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ¬ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∨ ( 𝑏 + ( 𝑘 · 𝑇 ) ) = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 641 |
632 631
|
leloed |
⊢ ( ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ↔ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∨ ( 𝑏 + ( 𝑘 · 𝑇 ) ) = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) ) |
| 642 |
640 641
|
mtbird |
⊢ ( ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ¬ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 643 |
642
|
3adantll2 |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ¬ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 644 |
643
|
adantllr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ¬ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 645 |
619
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 646 |
645
|
3adantl2 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 647 |
646
|
ad2antrr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 648 |
601
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 649 |
648
|
3adantl2 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 650 |
649
|
ad2antrr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 651 |
647 650
|
ltnled |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ↔ ¬ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 652 |
644 651
|
mpbird |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) |
| 653 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) |
| 654 |
|
eleq1 |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( 𝑐 ∈ 𝐴 ↔ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 655 |
654
|
anbi1d |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( ( 𝑐 ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 656 |
|
breq1 |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( 𝑐 < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ↔ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ) |
| 657 |
655 656
|
3anbi23d |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝑐 < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ↔ ( 𝜑 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ) ) |
| 658 |
|
oveq2 |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑐 ) = ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 659 |
658
|
breq2d |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( 𝐸 ≤ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑐 ) ↔ 𝐸 ≤ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) ) |
| 660 |
657 659
|
imbi12d |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝑐 < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑐 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) ) ) |
| 661 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝑐 < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) |
| 662 |
|
eleq1 |
⊢ ( 𝑑 = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ( 𝑑 ∈ 𝐴 ↔ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 663 |
662
|
anbi2d |
⊢ ( 𝑑 = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ↔ ( 𝑐 ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 664 |
|
breq2 |
⊢ ( 𝑑 = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ( 𝑐 < 𝑑 ↔ 𝑐 < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ) |
| 665 |
663 664
|
3anbi23d |
⊢ ( 𝑑 = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) ↔ ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝑐 < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ) ) |
| 666 |
|
oveq1 |
⊢ ( 𝑑 = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ( 𝑑 − 𝑐 ) = ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑐 ) ) |
| 667 |
666
|
breq2d |
⊢ ( 𝑑 = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ( 𝐸 ≤ ( 𝑑 − 𝑐 ) ↔ 𝐸 ≤ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑐 ) ) ) |
| 668 |
665 667
|
imbi12d |
⊢ ( 𝑑 = ( 𝑏 + ( 𝑘 · 𝑇 ) ) → ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝐸 ≤ ( 𝑑 − 𝑐 ) ) ↔ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝑐 < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑐 ) ) ) ) |
| 669 |
668 515
|
vtoclg |
⊢ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝑐 < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑐 ) ) ) |
| 670 |
661 669
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝑐 < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑐 ) ) |
| 671 |
660 670
|
vtoclg |
⊢ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) ) |
| 672 |
653 671
|
mpcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 673 |
627 629 652 672
|
syl3anc |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 674 |
395
|
ad2antlr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝑗 − 𝑘 ) ∈ ℝ ) |
| 675 |
293
|
ad2antrr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 ≤ 𝑗 ) → 𝑇 ∈ ℝ ) |
| 676 |
|
simpr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ≤ 𝑗 ) → 𝑘 ≤ 𝑗 ) |
| 677 |
283
|
ad2antrr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
| 678 |
286
|
ad2antlr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ≤ 𝑗 ) → 𝑘 ∈ ℝ ) |
| 679 |
677 678
|
subge0d |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ≤ 𝑗 ) → ( 0 ≤ ( 𝑗 − 𝑘 ) ↔ 𝑘 ≤ 𝑗 ) ) |
| 680 |
676 679
|
mpbird |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ≤ 𝑗 ) → 0 ≤ ( 𝑗 − 𝑘 ) ) |
| 681 |
680
|
adantll |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 ≤ 𝑗 ) → 0 ≤ ( 𝑗 − 𝑘 ) ) |
| 682 |
352
|
rpge0d |
⊢ ( 𝜓 → 0 ≤ 𝑇 ) |
| 683 |
682
|
ad2antrr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 ≤ 𝑗 ) → 0 ≤ 𝑇 ) |
| 684 |
674 675 681 683
|
mulge0d |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 ≤ 𝑗 ) → 0 ≤ ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) |
| 685 |
684
|
3adantl3 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → 0 ≤ ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) |
| 686 |
621
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∈ ℝ ) |
| 687 |
398
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → ( ( 𝑗 − 𝑘 ) · 𝑇 ) ∈ ℝ ) |
| 688 |
686 687
|
addge01d |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → ( 0 ≤ ( ( 𝑗 − 𝑘 ) · 𝑇 ) ↔ ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ≤ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) ) |
| 689 |
685 688
|
mpbid |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ≤ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 690 |
689
|
ad2antrr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ≤ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 691 |
617 622 624 673 690
|
letrd |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 692 |
616 691
|
pm2.61dan |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 693 |
372 378
|
eqtrd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( 𝑏 − 𝑎 ) + ( ( 𝑘 − 𝑗 ) · 𝑇 ) ) ) |
| 694 |
693
|
oveq1d |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( ( ( 𝑏 − 𝑎 ) + ( ( 𝑘 − 𝑗 ) · 𝑇 ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 695 |
365 369
|
subcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑏 − 𝑎 ) ∈ ℂ ) |
| 696 |
373 374
|
subcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑘 − 𝑗 ) ∈ ℂ ) |
| 697 |
696 375
|
mulcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑘 − 𝑗 ) · 𝑇 ) ∈ ℂ ) |
| 698 |
695 697 610
|
addassd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑏 − 𝑎 ) + ( ( 𝑘 − 𝑗 ) · 𝑇 ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( ( 𝑏 − 𝑎 ) + ( ( ( 𝑘 − 𝑗 ) · 𝑇 ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) ) |
| 699 |
341 336 336 341
|
subadd4b |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 − 𝑗 ) + ( 𝑗 − 𝑘 ) ) = ( ( 𝑘 − 𝑘 ) + ( 𝑗 − 𝑗 ) ) ) |
| 700 |
699
|
adantl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑘 − 𝑗 ) + ( 𝑗 − 𝑘 ) ) = ( ( 𝑘 − 𝑘 ) + ( 𝑗 − 𝑗 ) ) ) |
| 701 |
700
|
oveq1d |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑘 − 𝑗 ) + ( 𝑗 − 𝑘 ) ) · 𝑇 ) = ( ( ( 𝑘 − 𝑘 ) + ( 𝑗 − 𝑗 ) ) · 𝑇 ) ) |
| 702 |
696 609 375
|
adddird |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑘 − 𝑗 ) + ( 𝑗 − 𝑘 ) ) · 𝑇 ) = ( ( ( 𝑘 − 𝑗 ) · 𝑇 ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 703 |
340
|
subidd |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 − 𝑘 ) = 0 ) |
| 704 |
703
|
adantl |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 − 𝑘 ) = 0 ) |
| 705 |
562
|
adantr |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑗 − 𝑗 ) = 0 ) |
| 706 |
704 705
|
oveq12d |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 − 𝑘 ) + ( 𝑗 − 𝑗 ) ) = ( 0 + 0 ) ) |
| 707 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 708 |
706 707
|
eqtrdi |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 − 𝑘 ) + ( 𝑗 − 𝑗 ) ) = 0 ) |
| 709 |
708
|
oveq1d |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑘 − 𝑘 ) + ( 𝑗 − 𝑗 ) ) · 𝑇 ) = ( 0 · 𝑇 ) ) |
| 710 |
709
|
adantl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑘 − 𝑘 ) + ( 𝑗 − 𝑗 ) ) · 𝑇 ) = ( 0 · 𝑇 ) ) |
| 711 |
701 702 710
|
3eqtr3d |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑘 − 𝑗 ) · 𝑇 ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( 0 · 𝑇 ) ) |
| 712 |
711
|
oveq2d |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑏 − 𝑎 ) + ( ( ( 𝑘 − 𝑗 ) · 𝑇 ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) = ( ( 𝑏 − 𝑎 ) + ( 0 · 𝑇 ) ) ) |
| 713 |
318
|
mul02d |
⊢ ( 𝜓 → ( 0 · 𝑇 ) = 0 ) |
| 714 |
713
|
oveq2d |
⊢ ( 𝜓 → ( ( 𝑏 − 𝑎 ) + ( 0 · 𝑇 ) ) = ( ( 𝑏 − 𝑎 ) + 0 ) ) |
| 715 |
364 368
|
subcld |
⊢ ( 𝜓 → ( 𝑏 − 𝑎 ) ∈ ℂ ) |
| 716 |
715
|
addridd |
⊢ ( 𝜓 → ( ( 𝑏 − 𝑎 ) + 0 ) = ( 𝑏 − 𝑎 ) ) |
| 717 |
714 716
|
eqtrd |
⊢ ( 𝜓 → ( ( 𝑏 − 𝑎 ) + ( 0 · 𝑇 ) ) = ( 𝑏 − 𝑎 ) ) |
| 718 |
717
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑏 − 𝑎 ) + ( 0 · 𝑇 ) ) = ( 𝑏 − 𝑎 ) ) |
| 719 |
712 718
|
eqtrd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑏 − 𝑎 ) + ( ( ( 𝑘 − 𝑗 ) · 𝑇 ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) = ( 𝑏 − 𝑎 ) ) |
| 720 |
694 698 719
|
3eqtrd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( 𝑏 − 𝑎 ) ) |
| 721 |
720
|
3adant3 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( 𝑏 − 𝑎 ) ) |
| 722 |
721
|
ad2antrr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( 𝑏 − 𝑎 ) ) |
| 723 |
692 722
|
breqtrd |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( 𝑏 − 𝑎 ) ) |
| 724 |
|
simpll |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 725 |
|
simpr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) |
| 726 |
601
|
3adant2 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 727 |
726
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 728 |
619
|
3adant2 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 729 |
728
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 730 |
727 729
|
ltnled |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ↔ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ) |
| 731 |
725 730
|
mpbird |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 732 |
731
|
adantlr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 733 |
535
|
3adant3 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝑘 = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ) |
| 734 |
733
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑘 = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ) |
| 735 |
600
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 736 |
302
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) → 𝑏 ∈ ℝ ) |
| 737 |
735 736
|
resubcld |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) ∈ ℝ ) |
| 738 |
293
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) → 𝑇 ∈ ℝ ) |
| 739 |
531
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) → 𝑇 ≠ 0 ) |
| 740 |
737 738 739
|
redivcld |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ∈ ℝ ) |
| 741 |
740
|
3adant3l |
⊢ ( ( 𝜓 ∧ 𝑘 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ∈ ℝ ) |
| 742 |
741
|
3adant2l |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ∈ ℝ ) |
| 743 |
742
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ∈ ℝ ) |
| 744 |
618
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 745 |
302
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → 𝑏 ∈ ℝ ) |
| 746 |
744 745
|
resubcld |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) ∈ ℝ ) |
| 747 |
293
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → 𝑇 ∈ ℝ ) |
| 748 |
531
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → 𝑇 ≠ 0 ) |
| 749 |
746 747 748
|
redivcld |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ∈ ℝ ) |
| 750 |
749
|
3adant3r |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ∈ ℝ ) |
| 751 |
750
|
3adant2r |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ∈ ℝ ) |
| 752 |
751
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ∈ ℝ ) |
| 753 |
284
|
3ad2ant2 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝑗 ∈ ℝ ) |
| 754 |
753
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑗 ∈ ℝ ) |
| 755 |
726
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 756 |
302
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝑏 ∈ ℝ ) |
| 757 |
756
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑏 ∈ ℝ ) |
| 758 |
755 757
|
resubcld |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) ∈ ℝ ) |
| 759 |
728
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 760 |
759 757
|
resubcld |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) ∈ ℝ ) |
| 761 |
352
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝑇 ∈ ℝ+ ) |
| 762 |
761
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑇 ∈ ℝ+ ) |
| 763 |
601
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 764 |
619
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 765 |
302
|
ad2antrr |
⊢ ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑏 ∈ ℝ ) |
| 766 |
|
simpr |
⊢ ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 767 |
763 764 765 766
|
ltsub1dd |
⊢ ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) < ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) ) |
| 768 |
767
|
3adantl2 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) < ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) ) |
| 769 |
758 760 762 768
|
ltdiv1dd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) < ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) ) |
| 770 |
554 570
|
eqbrtrd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) < 𝑗 ) |
| 771 |
770
|
3adant3 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) < 𝑗 ) |
| 772 |
771
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) < 𝑗 ) |
| 773 |
743 752 754 769 772
|
lttrd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − 𝑏 ) / 𝑇 ) < 𝑗 ) |
| 774 |
734 773
|
eqbrtrd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑘 < 𝑗 ) |
| 775 |
774
|
adantlr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑘 < 𝑗 ) |
| 776 |
732 775
|
syldan |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝑘 < 𝑗 ) |
| 777 |
391
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝐸 ∈ ℝ ) |
| 778 |
393
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝑇 ∈ ℝ ) |
| 779 |
623
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ∈ ℝ ) |
| 780 |
522
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝐸 ≤ 𝑇 ) |
| 781 |
|
peano2rem |
⊢ ( 𝑗 ∈ ℝ → ( 𝑗 − 1 ) ∈ ℝ ) |
| 782 |
753 781
|
syl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
| 783 |
287
|
3ad2ant2 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝑘 ∈ ℝ ) |
| 784 |
782 783
|
resubcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑗 − 1 ) − 𝑘 ) ∈ ℝ ) |
| 785 |
784 393
|
remulcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑗 − 1 ) − 𝑘 ) · 𝑇 ) ∈ ℝ ) |
| 786 |
785
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → ( ( ( 𝑗 − 1 ) − 𝑘 ) · 𝑇 ) ∈ ℝ ) |
| 787 |
753
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝑗 ∈ ℝ ) |
| 788 |
330
|
a1i |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 1 ∈ ℝ ) |
| 789 |
787 788
|
resubcld |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
| 790 |
286
|
ad2antlr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 ∈ ℝ ) |
| 791 |
790
|
3ad2antl2 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 ∈ ℝ ) |
| 792 |
789 791
|
resubcld |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → ( ( 𝑗 − 1 ) − 𝑘 ) ∈ ℝ ) |
| 793 |
682
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑘 < ( 𝑗 − 1 ) ) → 0 ≤ 𝑇 ) |
| 794 |
793
|
3ad2antl1 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 0 ≤ 𝑇 ) |
| 795 |
283
|
ad2antrr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝑗 ∈ ℝ ) |
| 796 |
330
|
a1i |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 1 ∈ ℝ ) |
| 797 |
795 796
|
resubcld |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
| 798 |
|
simpr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 < ( 𝑗 − 1 ) ) |
| 799 |
|
simplr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 ∈ ℤ ) |
| 800 |
|
simpll |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝑗 ∈ ℤ ) |
| 801 |
|
1zzd |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 1 ∈ ℤ ) |
| 802 |
800 801
|
zsubcld |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) ∈ ℤ ) |
| 803 |
|
zltlem1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑗 − 1 ) ∈ ℤ ) → ( 𝑘 < ( 𝑗 − 1 ) ↔ 𝑘 ≤ ( ( 𝑗 − 1 ) − 1 ) ) ) |
| 804 |
799 802 803
|
syl2anc |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → ( 𝑘 < ( 𝑗 − 1 ) ↔ 𝑘 ≤ ( ( 𝑗 − 1 ) − 1 ) ) ) |
| 805 |
798 804
|
mpbid |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 ≤ ( ( 𝑗 − 1 ) − 1 ) ) |
| 806 |
790 797 796 805
|
lesubd |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 1 ≤ ( ( 𝑗 − 1 ) − 𝑘 ) ) |
| 807 |
806
|
3ad2antl2 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 1 ≤ ( ( 𝑗 − 1 ) − 𝑘 ) ) |
| 808 |
778 792 794 807
|
lemulge12d |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝑇 ≤ ( ( ( 𝑗 − 1 ) − 𝑘 ) · 𝑇 ) ) |
| 809 |
336 337 341
|
sub32d |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑗 − 1 ) − 𝑘 ) = ( ( 𝑗 − 𝑘 ) − 1 ) ) |
| 810 |
809
|
oveq1d |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑗 − 1 ) − 𝑘 ) · 𝑇 ) = ( ( ( 𝑗 − 𝑘 ) − 1 ) · 𝑇 ) ) |
| 811 |
810
|
adantl |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑗 − 1 ) − 𝑘 ) · 𝑇 ) = ( ( ( 𝑗 − 𝑘 ) − 1 ) · 𝑇 ) ) |
| 812 |
|
1cnd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 1 ∈ ℂ ) |
| 813 |
609 812 375
|
subdird |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑗 − 𝑘 ) − 1 ) · 𝑇 ) = ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − ( 1 · 𝑇 ) ) ) |
| 814 |
319
|
oveq2d |
⊢ ( 𝜓 → ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − ( 1 · 𝑇 ) ) = ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − 𝑇 ) ) |
| 815 |
814
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − ( 1 · 𝑇 ) ) = ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − 𝑇 ) ) |
| 816 |
811 813 815
|
3eqtrd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( ( 𝑗 − 1 ) − 𝑘 ) · 𝑇 ) = ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − 𝑇 ) ) |
| 817 |
816
|
3adant3 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑗 − 1 ) − 𝑘 ) · 𝑇 ) = ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − 𝑇 ) ) |
| 818 |
728 726
|
resubcld |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ∈ ℝ ) |
| 819 |
270 272 277 275
|
iccsuble |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ≤ ( 𝐶 − 𝐵 ) ) |
| 820 |
819 4
|
breqtrrdi |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ≤ 𝑇 ) |
| 821 |
820
|
3adant2 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ≤ 𝑇 ) |
| 822 |
818 393 398 821
|
lesub2dd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − 𝑇 ) ≤ ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ) ) |
| 823 |
817 822
|
eqbrtrd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑗 − 1 ) − 𝑘 ) · 𝑇 ) ≤ ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ) ) |
| 824 |
610
|
3adant3 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑗 − 𝑘 ) · 𝑇 ) ∈ ℂ ) |
| 825 |
728
|
recnd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℂ ) |
| 826 |
602
|
3adant2 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ ℂ ) |
| 827 |
824 825 826
|
subsub2d |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ) = ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) + ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) ) |
| 828 |
621
|
recnd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∈ ℂ ) |
| 829 |
824 828
|
addcomd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) + ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 830 |
827 829
|
eqtrd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑗 − 𝑘 ) · 𝑇 ) − ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) ) = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 831 |
823 830
|
breqtrd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑗 − 1 ) − 𝑘 ) · 𝑇 ) ≤ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 832 |
831
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → ( ( ( 𝑗 − 1 ) − 𝑘 ) · 𝑇 ) ≤ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 833 |
778 786 779 808 832
|
letrd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝑇 ≤ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 834 |
777 778 779 780 833
|
letrd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝐸 ≤ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 835 |
721
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( 𝑏 − 𝑎 ) ) |
| 836 |
834 835
|
breqtrd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝐸 ≤ ( 𝑏 − 𝑎 ) ) |
| 837 |
836
|
adantlr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < 𝑗 ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝐸 ≤ ( 𝑏 − 𝑎 ) ) |
| 838 |
837
|
adantlr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < 𝑗 ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∧ 𝑘 < ( 𝑗 − 1 ) ) → 𝐸 ≤ ( 𝑏 − 𝑎 ) ) |
| 839 |
|
simplll |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < 𝑗 ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 840 |
|
simpll2 |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < 𝑗 ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) |
| 841 |
|
simplr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < 𝑗 ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 < 𝑗 ) |
| 842 |
|
simpr |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < 𝑗 ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → ¬ 𝑘 < ( 𝑗 − 1 ) ) |
| 843 |
581 582 580 584
|
lesubd |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ) → 𝑘 ≤ ( 𝑗 − 1 ) ) |
| 844 |
843
|
3adant3 |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 ≤ ( 𝑗 − 1 ) ) |
| 845 |
|
simpr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → ¬ 𝑘 < ( 𝑗 − 1 ) ) |
| 846 |
284 781
|
syl |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑗 − 1 ) ∈ ℝ ) |
| 847 |
846
|
adantr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
| 848 |
286
|
ad2antlr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 ∈ ℝ ) |
| 849 |
847 848
|
lenltd |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → ( ( 𝑗 − 1 ) ≤ 𝑘 ↔ ¬ 𝑘 < ( 𝑗 − 1 ) ) ) |
| 850 |
845 849
|
mpbird |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) ≤ 𝑘 ) |
| 851 |
850
|
3adant2 |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) ≤ 𝑘 ) |
| 852 |
580
|
3adant3 |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 ∈ ℝ ) |
| 853 |
846
|
3ad2ant1 |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) ∈ ℝ ) |
| 854 |
852 853
|
letri3d |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → ( 𝑘 = ( 𝑗 − 1 ) ↔ ( 𝑘 ≤ ( 𝑗 − 1 ) ∧ ( 𝑗 − 1 ) ≤ 𝑘 ) ) ) |
| 855 |
844 851 854
|
mpbir2and |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 < 𝑗 ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 = ( 𝑗 − 1 ) ) |
| 856 |
840 841 842 855
|
syl3anc |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < 𝑗 ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 = ( 𝑗 − 1 ) ) |
| 857 |
856
|
adantlr |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < 𝑗 ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → 𝑘 = ( 𝑗 − 1 ) ) |
| 858 |
|
simpl1 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → 𝜓 ) |
| 859 |
|
simpl2l |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → 𝑗 ∈ ℤ ) |
| 860 |
|
simpl3l |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) |
| 861 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝑘 · 𝑇 ) = ( ( 𝑗 − 1 ) · 𝑇 ) ) |
| 862 |
861
|
oveq2d |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) = ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 863 |
862
|
eqcomd |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) |
| 864 |
863
|
adantl |
⊢ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) |
| 865 |
|
simpl |
⊢ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) |
| 866 |
864 865
|
eqeltrd |
⊢ ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) |
| 867 |
866
|
adantll |
⊢ ( ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) |
| 868 |
867
|
3ad2antl3 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) |
| 869 |
860 868
|
jca |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) |
| 870 |
|
id |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 871 |
870
|
3adant3r |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 872 |
744
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 873 |
271
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 874 |
873
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → 𝐶 ∈ ℝ ) |
| 875 |
269
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 876 |
271
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 877 |
|
elicc2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ( 𝐵 [,] 𝐶 ) ↔ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ∧ 𝐵 ≤ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ 𝐶 ) ) ) |
| 878 |
875 876 877
|
syl2anc |
⊢ ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ( 𝐵 [,] 𝐶 ) ↔ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ∧ 𝐵 ≤ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ 𝐶 ) ) ) |
| 879 |
276 878
|
mpbid |
⊢ ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ∧ 𝐵 ≤ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ 𝐶 ) ) |
| 880 |
879
|
simp3d |
⊢ ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ 𝐶 ) |
| 881 |
880
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ 𝐶 ) |
| 882 |
881
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ 𝐶 ) |
| 883 |
|
nne |
⊢ ( ¬ 𝐶 ≠ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ↔ 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 884 |
540 370
|
pncand |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑗 · 𝑇 ) ) = 𝑎 ) |
| 885 |
884
|
eqcomd |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → 𝑎 = ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑗 · 𝑇 ) ) ) |
| 886 |
885
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑎 = ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑗 · 𝑇 ) ) ) |
| 887 |
|
oveq1 |
⊢ ( 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( 𝐶 − ( 𝑗 · 𝑇 ) ) = ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑗 · 𝑇 ) ) ) |
| 888 |
887
|
eqcomd |
⊢ ( 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑗 · 𝑇 ) ) = ( 𝐶 − ( 𝑗 · 𝑇 ) ) ) |
| 889 |
888
|
adantl |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − ( 𝑗 · 𝑇 ) ) = ( 𝐶 − ( 𝑗 · 𝑇 ) ) ) |
| 890 |
4
|
oveq2i |
⊢ ( 𝐵 + 𝑇 ) = ( 𝐵 + ( 𝐶 − 𝐵 ) ) |
| 891 |
268 161
|
syl |
⊢ ( 𝜓 → 𝐵 ∈ ℂ ) |
| 892 |
268 162
|
syl |
⊢ ( 𝜓 → 𝐶 ∈ ℂ ) |
| 893 |
891 892
|
pncan3d |
⊢ ( 𝜓 → ( 𝐵 + ( 𝐶 − 𝐵 ) ) = 𝐶 ) |
| 894 |
890 893
|
eqtr2id |
⊢ ( 𝜓 → 𝐶 = ( 𝐵 + 𝑇 ) ) |
| 895 |
894
|
oveq1d |
⊢ ( 𝜓 → ( 𝐶 − ( 𝑗 · 𝑇 ) ) = ( ( 𝐵 + 𝑇 ) − ( 𝑗 · 𝑇 ) ) ) |
| 896 |
895
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( 𝐶 − ( 𝑗 · 𝑇 ) ) = ( ( 𝐵 + 𝑇 ) − ( 𝑗 · 𝑇 ) ) ) |
| 897 |
891
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 898 |
897 370 547
|
subsub3d |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( 𝐵 − ( ( 𝑗 · 𝑇 ) − 𝑇 ) ) = ( ( 𝐵 + 𝑇 ) − ( 𝑗 · 𝑇 ) ) ) |
| 899 |
550 547
|
mulsubfacd |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑗 · 𝑇 ) − 𝑇 ) = ( ( 𝑗 − 1 ) · 𝑇 ) ) |
| 900 |
899
|
oveq2d |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( 𝐵 − ( ( 𝑗 · 𝑇 ) − 𝑇 ) ) = ( 𝐵 − ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 901 |
896 898 900
|
3eqtr2d |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( 𝐶 − ( 𝑗 · 𝑇 ) ) = ( 𝐵 − ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 902 |
901
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( 𝐶 − ( 𝑗 · 𝑇 ) ) = ( 𝐵 − ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 903 |
886 889 902
|
3eqtrd |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑎 = ( 𝐵 − ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 904 |
903
|
3adantl3 |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑎 = ( 𝐵 − ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 905 |
904
|
adantlr |
⊢ ( ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) ∧ 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑎 = ( 𝐵 − ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 906 |
|
oveq1 |
⊢ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( ( 𝑗 − 1 ) · 𝑇 ) ) = ( 𝐵 − ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 907 |
906
|
eqcomd |
⊢ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 → ( 𝐵 − ( ( 𝑗 − 1 ) · 𝑇 ) ) = ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 908 |
907
|
ad2antlr |
⊢ ( ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) ∧ 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( 𝐵 − ( ( 𝑗 − 1 ) · 𝑇 ) ) = ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 909 |
364
|
ad2antrr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → 𝑏 ∈ ℂ ) |
| 910 |
|
1cnd |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → 1 ∈ ℂ ) |
| 911 |
550 910
|
subcld |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 − 1 ) ∈ ℂ ) |
| 912 |
911 547
|
mulcld |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑗 − 1 ) · 𝑇 ) ∈ ℂ ) |
| 913 |
912
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( ( 𝑗 − 1 ) · 𝑇 ) ∈ ℂ ) |
| 914 |
909 913
|
pncand |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝑏 ) |
| 915 |
914
|
3adantl3 |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝑏 ) |
| 916 |
915
|
adantr |
⊢ ( ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) ∧ 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝑏 ) |
| 917 |
905 908 916
|
3eqtrd |
⊢ ( ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) ∧ 𝐶 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑎 = 𝑏 ) |
| 918 |
883 917
|
sylan2b |
⊢ ( ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) ∧ ¬ 𝐶 ≠ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝑎 = 𝑏 ) |
| 919 |
309 358
|
ltned |
⊢ ( 𝜓 → 𝑎 ≠ 𝑏 ) |
| 920 |
919
|
neneqd |
⊢ ( 𝜓 → ¬ 𝑎 = 𝑏 ) |
| 921 |
920
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) → ¬ 𝑎 = 𝑏 ) |
| 922 |
921
|
ad2antrr |
⊢ ( ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) ∧ ¬ 𝐶 ≠ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → ¬ 𝑎 = 𝑏 ) |
| 923 |
918 922
|
condan |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → 𝐶 ≠ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) |
| 924 |
872 874 882 923
|
leneltd |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) |
| 925 |
871 924
|
sylan |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) |
| 926 |
268
|
ad2antrr |
⊢ ( ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → 𝜑 ) |
| 927 |
|
simplr |
⊢ ( ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) |
| 928 |
926 8
|
syl |
⊢ ( ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → 𝐶 ∈ 𝐴 ) |
| 929 |
|
simpr |
⊢ ( ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) |
| 930 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) |
| 931 |
654
|
anbi1d |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( ( 𝑐 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ↔ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) ) |
| 932 |
|
breq1 |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( 𝑐 < 𝐶 ↔ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) ) |
| 933 |
931 932
|
3anbi23d |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑐 < 𝐶 ) ↔ ( 𝜑 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) ) ) |
| 934 |
|
oveq2 |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( 𝐶 − 𝑐 ) = ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 935 |
934
|
breq2d |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( 𝐸 ≤ ( 𝐶 − 𝑐 ) ↔ 𝐸 ≤ ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) ) |
| 936 |
933 935
|
imbi12d |
⊢ ( 𝑐 = ( 𝑎 + ( 𝑗 · 𝑇 ) ) → ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑐 < 𝐶 ) → 𝐸 ≤ ( 𝐶 − 𝑐 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → 𝐸 ≤ ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) ) ) |
| 937 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑐 < 𝐶 ) → 𝐶 ∈ 𝐴 ) |
| 938 |
403
|
anbi2d |
⊢ ( 𝑑 = 𝐶 → ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ↔ ( 𝑐 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) ) |
| 939 |
|
breq2 |
⊢ ( 𝑑 = 𝐶 → ( 𝑐 < 𝑑 ↔ 𝑐 < 𝐶 ) ) |
| 940 |
938 939
|
3anbi23d |
⊢ ( 𝑑 = 𝐶 → ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) ↔ ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑐 < 𝐶 ) ) ) |
| 941 |
|
oveq1 |
⊢ ( 𝑑 = 𝐶 → ( 𝑑 − 𝑐 ) = ( 𝐶 − 𝑐 ) ) |
| 942 |
941
|
breq2d |
⊢ ( 𝑑 = 𝐶 → ( 𝐸 ≤ ( 𝑑 − 𝑐 ) ↔ 𝐸 ≤ ( 𝐶 − 𝑐 ) ) ) |
| 943 |
940 942
|
imbi12d |
⊢ ( 𝑑 = 𝐶 → ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝑐 < 𝑑 ) → 𝐸 ≤ ( 𝑑 − 𝑐 ) ) ↔ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑐 < 𝐶 ) → 𝐸 ≤ ( 𝐶 − 𝑐 ) ) ) ) |
| 944 |
943 515
|
vtoclg |
⊢ ( 𝐶 ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑐 < 𝐶 ) → 𝐸 ≤ ( 𝐶 − 𝑐 ) ) ) |
| 945 |
937 944
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑐 < 𝐶 ) → 𝐸 ≤ ( 𝐶 − 𝑐 ) ) |
| 946 |
936 945
|
vtoclg |
⊢ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → 𝐸 ≤ ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) ) |
| 947 |
930 946
|
mpcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → 𝐸 ≤ ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 948 |
926 927 928 929 947
|
syl121anc |
⊢ ( ( ( 𝜓 ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → 𝐸 ≤ ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 949 |
948
|
adantlrr |
⊢ ( ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → 𝐸 ≤ ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 950 |
949
|
3adantl2 |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → 𝐸 ≤ ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 951 |
950
|
adantlr |
⊢ ( ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → 𝐸 ≤ ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 952 |
892
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 953 |
599
|
sselda |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ℝ ) |
| 954 |
953
|
recnd |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ℂ ) |
| 955 |
952 954
|
npcand |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → ( ( 𝐶 − ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) = 𝐶 ) |
| 956 |
955
|
eqcomd |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → 𝐶 = ( ( 𝐶 − ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) ) |
| 957 |
956
|
oveq1d |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝐶 − ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 958 |
957
|
adantrl |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝐶 − ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 959 |
958
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝐶 − ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 960 |
959
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝐶 − ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 961 |
|
oveq2 |
⊢ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 → ( 𝐶 − ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) = ( 𝐶 − 𝐵 ) ) |
| 962 |
961
|
oveq1d |
⊢ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 → ( ( 𝐶 − ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) = ( ( 𝐶 − 𝐵 ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) ) |
| 963 |
962
|
oveq1d |
⊢ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 → ( ( ( 𝐶 − ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝐶 − 𝐵 ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 964 |
963
|
adantl |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( ( ( 𝐶 − ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝐶 − 𝐵 ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 965 |
4
|
eqcomi |
⊢ ( 𝐶 − 𝐵 ) = 𝑇 |
| 966 |
965
|
oveq1i |
⊢ ( ( 𝐶 − 𝐵 ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) = ( 𝑇 + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 967 |
966
|
a1i |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → ( ( 𝐶 − 𝐵 ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) = ( 𝑇 + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) ) |
| 968 |
318
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → 𝑇 ∈ ℂ ) |
| 969 |
968 954
|
addcomd |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑇 + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) = ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) + 𝑇 ) ) |
| 970 |
967 969
|
eqtrd |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → ( ( 𝐶 − 𝐵 ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) = ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) + 𝑇 ) ) |
| 971 |
970
|
oveq1d |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → ( ( ( 𝐶 − 𝐵 ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) + 𝑇 ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 972 |
971
|
adantrl |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) + 𝑇 ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 973 |
972
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) + 𝑇 ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 974 |
973
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( ( ( 𝐶 − 𝐵 ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) + 𝑇 ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 975 |
954
|
adantrl |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ℂ ) |
| 976 |
975
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ℂ ) |
| 977 |
976
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ℂ ) |
| 978 |
318
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → 𝑇 ∈ ℂ ) |
| 979 |
978
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → 𝑇 ∈ ℂ ) |
| 980 |
618
|
adantrr |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℝ ) |
| 981 |
980
|
recnd |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℂ ) |
| 982 |
981
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℂ ) |
| 983 |
982
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ ℂ ) |
| 984 |
977 979 983
|
addsubd |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) + 𝑇 ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 985 |
974 984
|
eqtrd |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( ( ( 𝐶 − 𝐵 ) + ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 986 |
960 964 985
|
3eqtrd |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 987 |
986
|
adantr |
⊢ ( ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → ( 𝐶 − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 988 |
951 987
|
breqtrd |
⊢ ( ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) ∧ ( 𝑎 + ( 𝑗 · 𝑇 ) ) < 𝐶 ) → 𝐸 ≤ ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 989 |
925 988
|
mpdan |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → 𝐸 ≤ ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 990 |
|
simpl1 |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → 𝜓 ) |
| 991 |
|
simpl3r |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) |
| 992 |
|
simpr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) |
| 993 |
269
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ∧ ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → 𝐵 ∈ ℝ ) |
| 994 |
953
|
3adant3 |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ∧ ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ℝ ) |
| 995 |
273
|
sselda |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ( 𝐵 [,] 𝐶 ) ) |
| 996 |
269
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 997 |
271
|
adantr |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 998 |
|
elicc2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ( 𝐵 [,] 𝐶 ) ↔ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ℝ ∧ 𝐵 ≤ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ≤ 𝐶 ) ) ) |
| 999 |
996 997 998
|
syl2anc |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ( 𝐵 [,] 𝐶 ) ↔ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ℝ ∧ 𝐵 ≤ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ≤ 𝐶 ) ) ) |
| 1000 |
995 999
|
mpbid |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ℝ ∧ 𝐵 ≤ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ≤ 𝐶 ) ) |
| 1001 |
1000
|
simp2d |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) → 𝐵 ≤ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 1002 |
1001
|
3adant3 |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ∧ ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → 𝐵 ≤ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 1003 |
|
neqne |
⊢ ( ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ≠ 𝐵 ) |
| 1004 |
1003
|
3ad2ant3 |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ∧ ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ≠ 𝐵 ) |
| 1005 |
993 994 1002 1004
|
leneltd |
⊢ ( ( 𝜓 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ∧ ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 1006 |
990 991 992 1005
|
syl3anc |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 1007 |
390
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ∈ ℝ ) |
| 1008 |
1007
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → 𝐸 ∈ ℝ ) |
| 1009 |
953
|
adantrl |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ℝ ) |
| 1010 |
1009
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ ℝ ) |
| 1011 |
269
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 1012 |
1010 1011
|
resubcld |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) ∈ ℝ ) |
| 1013 |
1012
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) ∈ ℝ ) |
| 1014 |
1009 980
|
resubcld |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∈ ℝ ) |
| 1015 |
293
|
adantr |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → 𝑇 ∈ ℝ ) |
| 1016 |
1014 1015
|
readdcld |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ∈ ℝ ) |
| 1017 |
1016
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ∈ ℝ ) |
| 1018 |
1017
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ∈ ℝ ) |
| 1019 |
268
|
adantr |
⊢ ( ( 𝜓 ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → 𝜑 ) |
| 1020 |
1019
|
3ad2antl1 |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → 𝜑 ) |
| 1021 |
1020 7
|
syl |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → 𝐵 ∈ 𝐴 ) |
| 1022 |
|
simpl3r |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) |
| 1023 |
|
simpr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 1024 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) |
| 1025 |
|
eleq1 |
⊢ ( 𝑑 = ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) → ( 𝑑 ∈ 𝐴 ↔ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1026 |
1025
|
anbi2d |
⊢ ( 𝑑 = ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) → ( ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 1027 |
|
breq2 |
⊢ ( 𝑑 = ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) → ( 𝐵 < 𝑑 ↔ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) ) |
| 1028 |
1026 1027
|
3anbi23d |
⊢ ( 𝑑 = ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) → ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝐵 < 𝑑 ) ↔ ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) ) ) |
| 1029 |
|
oveq1 |
⊢ ( 𝑑 = ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) → ( 𝑑 − 𝐵 ) = ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) ) |
| 1030 |
1029
|
breq2d |
⊢ ( 𝑑 = ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) → ( 𝐸 ≤ ( 𝑑 − 𝐵 ) ↔ 𝐸 ≤ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) ) ) |
| 1031 |
1028 1030
|
imbi12d |
⊢ ( 𝑑 = ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) → ( ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ 𝐵 < 𝑑 ) → 𝐸 ≤ ( 𝑑 − 𝐵 ) ) ↔ ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) ) ) ) |
| 1032 |
1031 517
|
vtoclg |
⊢ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) ) ) |
| 1033 |
1024 1032
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) ) |
| 1034 |
1020 1021 1022 1023 1033
|
syl121anc |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → 𝐸 ≤ ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) ) |
| 1035 |
269
|
adantr |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 1036 |
980 1035
|
resubcld |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝐵 ) ∈ ℝ ) |
| 1037 |
965 1015
|
eqeltrid |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 1038 |
271
|
adantr |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐶 ∈ ℝ ) |
| 1039 |
880
|
adantrr |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ 𝐶 ) |
| 1040 |
980 1038 1035 1039
|
lesub1dd |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝐵 ) ≤ ( 𝐶 − 𝐵 ) ) |
| 1041 |
1036 1037 1014 1040
|
leadd2dd |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝐵 ) ) ≤ ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( 𝐶 − 𝐵 ) ) ) |
| 1042 |
975 981
|
npcand |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) |
| 1043 |
1042
|
eqcomd |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 1044 |
1043
|
oveq1d |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) = ( ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) − 𝐵 ) ) |
| 1045 |
1014
|
recnd |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∈ ℂ ) |
| 1046 |
891
|
adantr |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 1047 |
1045 981 1046
|
addsubassd |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) − 𝐵 ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝐵 ) ) ) |
| 1048 |
1044 1047
|
eqtrd |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) − 𝐵 ) ) ) |
| 1049 |
4
|
oveq2i |
⊢ ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( 𝐶 − 𝐵 ) ) |
| 1050 |
1049
|
a1i |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( 𝐶 − 𝐵 ) ) ) |
| 1051 |
1041 1048 1050
|
3brtr4d |
⊢ ( ( 𝜓 ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) ≤ ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 1052 |
1051
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) ≤ ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 1053 |
1052
|
adantr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − 𝐵 ) ≤ ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 1054 |
1008 1013 1018 1034 1053
|
letrd |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝐵 < ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ) → 𝐸 ≤ ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 1055 |
1006 1054
|
syldan |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) = 𝐵 ) → 𝐸 ≤ ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 1056 |
989 1055
|
pm2.61dan |
⊢ ( ( 𝜓 ∧ 𝑗 ∈ ℤ ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 1057 |
858 859 869 1056
|
syl3anc |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → 𝐸 ≤ ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 1058 |
720
|
eqcomd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑏 − 𝑎 ) = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 1059 |
1058
|
adantr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( 𝑏 − 𝑎 ) = ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) ) |
| 1060 |
862
|
oveq1d |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 1061 |
1060
|
adantl |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) = ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ) |
| 1062 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝑗 − 𝑘 ) = ( 𝑗 − ( 𝑗 − 1 ) ) ) |
| 1063 |
1062
|
oveq1d |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( ( 𝑗 − 𝑘 ) · 𝑇 ) = ( ( 𝑗 − ( 𝑗 − 1 ) ) · 𝑇 ) ) |
| 1064 |
1063
|
adantl |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( ( 𝑗 − 𝑘 ) · 𝑇 ) = ( ( 𝑗 − ( 𝑗 − 1 ) ) · 𝑇 ) ) |
| 1065 |
|
1cnd |
⊢ ( 𝑗 ∈ ℤ → 1 ∈ ℂ ) |
| 1066 |
335 1065
|
nncand |
⊢ ( 𝑗 ∈ ℤ → ( 𝑗 − ( 𝑗 − 1 ) ) = 1 ) |
| 1067 |
1066
|
oveq1d |
⊢ ( 𝑗 ∈ ℤ → ( ( 𝑗 − ( 𝑗 − 1 ) ) · 𝑇 ) = ( 1 · 𝑇 ) ) |
| 1068 |
1067
|
ad2antlr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( ( 𝑗 − ( 𝑗 − 1 ) ) · 𝑇 ) = ( 1 · 𝑇 ) ) |
| 1069 |
319
|
ad2antrr |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( 1 · 𝑇 ) = 𝑇 ) |
| 1070 |
1064 1068 1069
|
3eqtrd |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( ( 𝑗 − 𝑘 ) · 𝑇 ) = 𝑇 ) |
| 1071 |
1061 1070
|
oveq12d |
⊢ ( ( ( 𝜓 ∧ 𝑗 ∈ ℤ ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 1072 |
1071
|
adantlrr |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + ( ( 𝑗 − 𝑘 ) · 𝑇 ) ) = ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) ) |
| 1073 |
1059 1072
|
eqtr2d |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) = ( 𝑏 − 𝑎 ) ) |
| 1074 |
1073
|
3adantl3 |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → ( ( ( 𝑏 + ( ( 𝑗 − 1 ) · 𝑇 ) ) − ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) + 𝑇 ) = ( 𝑏 − 𝑎 ) ) |
| 1075 |
1057 1074
|
breqtrd |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 = ( 𝑗 − 1 ) ) → 𝐸 ≤ ( 𝑏 − 𝑎 ) ) |
| 1076 |
839 857 1075
|
syl2anc |
⊢ ( ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < 𝑗 ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) ∧ ¬ 𝑘 < ( 𝑗 − 1 ) ) → 𝐸 ≤ ( 𝑏 − 𝑎 ) ) |
| 1077 |
838 1076
|
pm2.61dan |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 < 𝑗 ) ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) < ( 𝑎 + ( 𝑗 · 𝑇 ) ) ) → 𝐸 ≤ ( 𝑏 − 𝑎 ) ) |
| 1078 |
724 776 732 1077
|
syl21anc |
⊢ ( ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) ∧ ¬ ( 𝑎 + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ) → 𝐸 ≤ ( 𝑏 − 𝑎 ) ) |
| 1079 |
723 1078
|
pm2.61dan |
⊢ ( ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑘 ≤ 𝑗 ) → 𝐸 ≤ ( 𝑏 − 𝑎 ) ) |
| 1080 |
387 1079
|
mpdan |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( 𝑏 − 𝑎 ) ) |
| 1081 |
309 302 358
|
ltled |
⊢ ( 𝜓 → 𝑎 ≤ 𝑏 ) |
| 1082 |
309 302 1081
|
abssuble0d |
⊢ ( 𝜓 → ( abs ‘ ( 𝑎 − 𝑏 ) ) = ( 𝑏 − 𝑎 ) ) |
| 1083 |
1082
|
eqcomd |
⊢ ( 𝜓 → ( 𝑏 − 𝑎 ) = ( abs ‘ ( 𝑎 − 𝑏 ) ) ) |
| 1084 |
1083
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑏 − 𝑎 ) = ( abs ‘ ( 𝑎 − 𝑏 ) ) ) |
| 1085 |
1080 1084
|
breqtrd |
⊢ ( ( 𝜓 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑎 − 𝑏 ) ) ) |
| 1086 |
1085
|
3exp |
⊢ ( 𝜓 → ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) → 𝐸 ≤ ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) ) |
| 1087 |
1086
|
rexlimdvv |
⊢ ( 𝜓 → ( ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) → 𝐸 ≤ ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) |
| 1088 |
265 1087
|
mpd |
⊢ ( 𝜓 → 𝐸 ≤ ( abs ‘ ( 𝑎 − 𝑏 ) ) ) |
| 1089 |
18 1088
|
sylbir |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑎 − 𝑏 ) ) ) |
| 1090 |
264 1089
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑦 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑏 ) ) ) |
| 1091 |
251 1090
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 1092 |
231 237 238 1091
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑦 < 𝑧 ) → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 1093 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ ¬ 𝑦 < 𝑧 ) → ¬ 𝑦 < 𝑧 ) |
| 1094 |
|
simpl3 |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ ¬ 𝑦 < 𝑧 ) → 𝑦 ≠ 𝑧 ) |
| 1095 |
|
simpl1 |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ ¬ 𝑦 < 𝑧 ) → 𝑦 ∈ ℝ ) |
| 1096 |
|
simpl2 |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ ¬ 𝑦 < 𝑧 ) → 𝑧 ∈ ℝ ) |
| 1097 |
1095 1096
|
lttri2d |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ ¬ 𝑦 < 𝑧 ) → ( 𝑦 ≠ 𝑧 ↔ ( 𝑦 < 𝑧 ∨ 𝑧 < 𝑦 ) ) ) |
| 1098 |
1094 1097
|
mpbid |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ ¬ 𝑦 < 𝑧 ) → ( 𝑦 < 𝑧 ∨ 𝑧 < 𝑦 ) ) |
| 1099 |
1098
|
ord |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ ¬ 𝑦 < 𝑧 ) → ( ¬ 𝑦 < 𝑧 → 𝑧 < 𝑦 ) ) |
| 1100 |
1093 1099
|
mpd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ∧ ¬ 𝑦 < 𝑧 ) → 𝑧 < 𝑦 ) |
| 1101 |
1100
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) ∧ ¬ 𝑦 < 𝑧 ) → 𝑧 < 𝑦 ) |
| 1102 |
1101
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 < 𝑧 ) → 𝑧 < 𝑦 ) |
| 1103 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑧 < 𝑦 ) → 𝜑 ) |
| 1104 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 < 𝑦 ) → 𝑧 ∈ ℝ ) |
| 1105 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 < 𝑦 ) → 𝑦 ∈ ℝ ) |
| 1106 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 < 𝑦 ) → 𝑧 < 𝑦 ) |
| 1107 |
1104 1105 1106
|
3jca |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 < 𝑦 ) → ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦 ) ) |
| 1108 |
1107
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ 𝑧 < 𝑦 ) → ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦 ) ) |
| 1109 |
1108
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑧 < 𝑦 ) → ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦 ) ) |
| 1110 |
|
oveq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 · 𝑇 ) = ( 𝑖 · 𝑇 ) ) |
| 1111 |
1110
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝑦 + ( 𝑗 · 𝑇 ) ) = ( 𝑦 + ( 𝑖 · 𝑇 ) ) ) |
| 1112 |
1111
|
eleq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ↔ ( 𝑦 + ( 𝑖 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1113 |
1112
|
anbi1d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ( ( 𝑦 + ( 𝑖 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 1114 |
|
oveq1 |
⊢ ( 𝑘 = 𝑙 → ( 𝑘 · 𝑇 ) = ( 𝑙 · 𝑇 ) ) |
| 1115 |
1114
|
oveq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝑧 + ( 𝑘 · 𝑇 ) ) = ( 𝑧 + ( 𝑙 · 𝑇 ) ) ) |
| 1116 |
1115
|
eleq1d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ↔ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1117 |
1116
|
anbi2d |
⊢ ( 𝑘 = 𝑙 → ( ( ( 𝑦 + ( 𝑖 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ( ( 𝑦 + ( 𝑖 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 1118 |
1113 1117
|
cbvrex2vw |
⊢ ( ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ∃ 𝑖 ∈ ℤ ∃ 𝑙 ∈ ℤ ( ( 𝑦 + ( 𝑖 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1119 |
|
oveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 · 𝑇 ) = ( 𝑘 · 𝑇 ) ) |
| 1120 |
1119
|
oveq2d |
⊢ ( 𝑖 = 𝑘 → ( 𝑦 + ( 𝑖 · 𝑇 ) ) = ( 𝑦 + ( 𝑘 · 𝑇 ) ) ) |
| 1121 |
1120
|
eleq1d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑦 + ( 𝑖 · 𝑇 ) ) ∈ 𝐴 ↔ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1122 |
1121
|
anbi1d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 𝑦 + ( 𝑖 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ 𝐴 ) ↔ ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 1123 |
|
oveq1 |
⊢ ( 𝑙 = 𝑗 → ( 𝑙 · 𝑇 ) = ( 𝑗 · 𝑇 ) ) |
| 1124 |
1123
|
oveq2d |
⊢ ( 𝑙 = 𝑗 → ( 𝑧 + ( 𝑙 · 𝑇 ) ) = ( 𝑧 + ( 𝑗 · 𝑇 ) ) ) |
| 1125 |
1124
|
eleq1d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ 𝐴 ↔ ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1126 |
1125
|
anbi2d |
⊢ ( 𝑙 = 𝑗 → ( ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ 𝐴 ) ↔ ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 1127 |
1122 1126
|
cbvrex2vw |
⊢ ( ∃ 𝑖 ∈ ℤ ∃ 𝑙 ∈ ℤ ( ( 𝑦 + ( 𝑖 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ 𝐴 ) ↔ ∃ 𝑘 ∈ ℤ ∃ 𝑗 ∈ ℤ ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1128 |
|
rexcom |
⊢ ( ∃ 𝑘 ∈ ℤ ∃ 𝑗 ∈ ℤ ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ↔ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1129 |
|
ancom |
⊢ ( ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ↔ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1130 |
1129
|
2rexbii |
⊢ ( ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ↔ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1131 |
1127 1128 1130
|
3bitri |
⊢ ( ∃ 𝑖 ∈ ℤ ∃ 𝑙 ∈ ℤ ( ( 𝑦 + ( 𝑖 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ 𝐴 ) ↔ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1132 |
1118 1131
|
sylbb |
⊢ ( ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) → ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1133 |
1132
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑧 < 𝑦 ) → ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1134 |
|
eleq1 |
⊢ ( 𝑏 = 𝑦 → ( 𝑏 ∈ ℝ ↔ 𝑦 ∈ ℝ ) ) |
| 1135 |
|
breq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝑧 < 𝑏 ↔ 𝑧 < 𝑦 ) ) |
| 1136 |
1134 1135
|
3anbi23d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦 ) ) ) |
| 1137 |
1136
|
anbi2d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝜑 ∧ ( 𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏 ) ) ↔ ( 𝜑 ∧ ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦 ) ) ) ) |
| 1138 |
|
oveq1 |
⊢ ( 𝑏 = 𝑦 → ( 𝑏 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( 𝑘 · 𝑇 ) ) ) |
| 1139 |
1138
|
eleq1d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ↔ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1140 |
1139
|
anbi2d |
⊢ ( 𝑏 = 𝑦 → ( ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 1141 |
1140
|
2rexbidv |
⊢ ( 𝑏 = 𝑦 → ( ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 1142 |
1137 1141
|
anbi12d |
⊢ ( 𝑏 = 𝑦 → ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ↔ ( ( 𝜑 ∧ ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) ) |
| 1143 |
|
oveq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝑧 − 𝑏 ) = ( 𝑧 − 𝑦 ) ) |
| 1144 |
1143
|
fveq2d |
⊢ ( 𝑏 = 𝑦 → ( abs ‘ ( 𝑧 − 𝑏 ) ) = ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 1145 |
1144
|
breq2d |
⊢ ( 𝑏 = 𝑦 → ( 𝐸 ≤ ( abs ‘ ( 𝑧 − 𝑏 ) ) ↔ 𝐸 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) ) |
| 1146 |
1142 1145
|
imbi12d |
⊢ ( 𝑏 = 𝑦 → ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑧 − 𝑏 ) ) ) ↔ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) ) ) |
| 1147 |
|
eleq1 |
⊢ ( 𝑎 = 𝑧 → ( 𝑎 ∈ ℝ ↔ 𝑧 ∈ ℝ ) ) |
| 1148 |
|
breq1 |
⊢ ( 𝑎 = 𝑧 → ( 𝑎 < 𝑏 ↔ 𝑧 < 𝑏 ) ) |
| 1149 |
1147 1148
|
3anbi13d |
⊢ ( 𝑎 = 𝑧 → ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏 ) ) ) |
| 1150 |
1149
|
anbi2d |
⊢ ( 𝑎 = 𝑧 → ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ) ↔ ( 𝜑 ∧ ( 𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏 ) ) ) ) |
| 1151 |
|
oveq1 |
⊢ ( 𝑎 = 𝑧 → ( 𝑎 + ( 𝑗 · 𝑇 ) ) = ( 𝑧 + ( 𝑗 · 𝑇 ) ) ) |
| 1152 |
1151
|
eleq1d |
⊢ ( 𝑎 = 𝑧 → ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ↔ ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ) ) |
| 1153 |
1152
|
anbi1d |
⊢ ( 𝑎 = 𝑧 → ( ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 1154 |
1153
|
2rexbidv |
⊢ ( 𝑎 = 𝑧 → ( ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ↔ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) |
| 1155 |
1150 1154
|
anbi12d |
⊢ ( 𝑎 = 𝑧 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ↔ ( ( 𝜑 ∧ ( 𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ) ) |
| 1156 |
|
oveq1 |
⊢ ( 𝑎 = 𝑧 → ( 𝑎 − 𝑏 ) = ( 𝑧 − 𝑏 ) ) |
| 1157 |
1156
|
fveq2d |
⊢ ( 𝑎 = 𝑧 → ( abs ‘ ( 𝑎 − 𝑏 ) ) = ( abs ‘ ( 𝑧 − 𝑏 ) ) ) |
| 1158 |
1157
|
breq2d |
⊢ ( 𝑎 = 𝑧 → ( 𝐸 ≤ ( abs ‘ ( 𝑎 − 𝑏 ) ) ↔ 𝐸 ≤ ( abs ‘ ( 𝑧 − 𝑏 ) ) ) ) |
| 1159 |
1155 1158
|
imbi12d |
⊢ ( 𝑎 = 𝑧 → ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑎 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ↔ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑧 − 𝑏 ) ) ) ) ) |
| 1160 |
1159 1089
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 < 𝑏 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑏 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑧 − 𝑏 ) ) ) |
| 1161 |
1146 1160
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 < 𝑦 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑧 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 1162 |
1103 1109 1133 1161
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑧 < 𝑦 ) → 𝐸 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 1163 |
|
recn |
⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℂ ) |
| 1164 |
1163
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℂ ) |
| 1165 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
| 1166 |
1165
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 1167 |
1164 1166
|
abssubd |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 1168 |
1167
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 1169 |
1168
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑧 < 𝑦 ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 1170 |
1162 1169
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ 𝑧 < 𝑦 ) → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 1171 |
1170
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑧 < 𝑦 → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) ) |
| 1172 |
1171
|
3adantlr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → ( 𝑧 < 𝑦 → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) ) |
| 1173 |
1172
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 < 𝑧 ) → ( 𝑧 < 𝑦 → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) ) |
| 1174 |
1102 1173
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 < 𝑧 ) → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 1175 |
1092 1174
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≠ 𝑧 ) ) ∧ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( 𝑦 + ( 𝑗 · 𝑇 ) ) ∈ 𝐴 ∧ ( 𝑧 + ( 𝑘 · 𝑇 ) ) ∈ 𝐴 ) ) → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 1176 |
198 206 230 1175
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 1177 |
389
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝐸 ∈ ℝ ) |
| 1178 |
200 203
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → ( 𝑦 − 𝑧 ) ∈ ℝ ) |
| 1179 |
1178
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → ( 𝑦 − 𝑧 ) ∈ ℂ ) |
| 1180 |
1179
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → ( abs ‘ ( 𝑦 − 𝑧 ) ) ∈ ℝ ) |
| 1181 |
1180
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( abs ‘ ( 𝑦 − 𝑧 ) ) ∈ ℝ ) |
| 1182 |
1177 1181
|
lenltd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝐸 ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ↔ ¬ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝐸 ) ) |
| 1183 |
1176 1182
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → ¬ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝐸 ) |
| 1184 |
|
nan |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → ¬ ( 𝑦 ≠ 𝑧 ∧ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝐸 ) ) ↔ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) ∧ 𝑦 ≠ 𝑧 ) → ¬ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝐸 ) ) |
| 1185 |
1183 1184
|
mpbir |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → ¬ ( 𝑦 ≠ 𝑧 ∧ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝐸 ) ) |
| 1186 |
1185
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐻 ∀ 𝑧 ∈ 𝐻 ¬ ( 𝑦 ≠ 𝑧 ∧ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝐸 ) ) |
| 1187 |
|
ralnex2 |
⊢ ( ∀ 𝑦 ∈ 𝐻 ∀ 𝑧 ∈ 𝐻 ¬ ( 𝑦 ≠ 𝑧 ∧ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝐸 ) ↔ ¬ ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ 𝐻 ( 𝑦 ≠ 𝑧 ∧ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝐸 ) ) |
| 1188 |
1186 1187
|
sylib |
⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ 𝐻 ( 𝑦 ≠ 𝑧 ∧ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝐸 ) ) |
| 1189 |
1188
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) ∧ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ) → ¬ ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ 𝐻 ( 𝑦 ≠ 𝑧 ∧ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝐸 ) ) |
| 1190 |
197 1189
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) → ¬ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ) |
| 1191 |
1190
|
intnanrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) → ¬ ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) ) |
| 1192 |
|
elin |
⊢ ( 𝑥 ∈ ( ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ∩ ( 𝑋 [,] 𝑌 ) ) ↔ ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) ) |
| 1193 |
1191 1192
|
sylnibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) → ¬ 𝑥 ∈ ( ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ∩ ( 𝑋 [,] 𝑌 ) ) ) |
| 1194 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) → 𝐽 ∈ Top ) |
| 1195 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 1196 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) → 𝐻 ⊆ ( 𝑋 [,] 𝑌 ) ) |
| 1197 |
30 16
|
restlp |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℝ ∧ 𝐻 ⊆ ( 𝑋 [,] 𝑌 ) ) → ( ( limPt ‘ 𝐾 ) ‘ 𝐻 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ∩ ( 𝑋 [,] 𝑌 ) ) ) |
| 1198 |
1194 1195 1196 1197
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝐻 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝐻 ) ∩ ( 𝑋 [,] 𝑌 ) ) ) |
| 1199 |
1193 1198
|
neleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐾 ) → ¬ 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐻 ) ) |
| 1200 |
1199
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ ∪ 𝐾 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐻 ) ) |
| 1201 |
1200
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 ∈ Fin ) → ¬ ∃ 𝑥 ∈ ∪ 𝐾 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐻 ) ) |
| 1202 |
41 1201
|
condan |
⊢ ( 𝜑 → 𝐻 ∈ Fin ) |