Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem46.cn |
⊢ ( 𝜑 → 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) ) |
2 |
|
fourierdlem46.rlim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
3 |
|
fourierdlem46.llim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
4 |
|
fourierdlem46.qiso |
⊢ ( 𝜑 → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
5 |
|
fourierdlem46.qf |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) |
6 |
|
fourierdlem46.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝑀 ) ) |
7 |
|
fourierdlem46.10 |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
8 |
|
fourierdlem46.qiss |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( - π (,) π ) ) |
9 |
|
fourierdlem46.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
10 |
|
fourierdlem46.h |
⊢ 𝐻 = ( { - π , π , 𝐶 } ∪ ( ( - π [,] π ) ∖ dom 𝐹 ) ) |
11 |
|
fourierdlem46.ranq |
⊢ ( 𝜑 → ran 𝑄 = 𝐻 ) |
12 |
|
pire |
⊢ π ∈ ℝ |
13 |
12
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
14 |
13
|
renegcld |
⊢ ( 𝜑 → - π ∈ ℝ ) |
15 |
|
tpssi |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ∧ 𝐶 ∈ ℝ ) → { - π , π , 𝐶 } ⊆ ℝ ) |
16 |
14 13 9 15
|
syl3anc |
⊢ ( 𝜑 → { - π , π , 𝐶 } ⊆ ℝ ) |
17 |
14 13
|
iccssred |
⊢ ( 𝜑 → ( - π [,] π ) ⊆ ℝ ) |
18 |
17
|
ssdifssd |
⊢ ( 𝜑 → ( ( - π [,] π ) ∖ dom 𝐹 ) ⊆ ℝ ) |
19 |
16 18
|
unssd |
⊢ ( 𝜑 → ( { - π , π , 𝐶 } ∪ ( ( - π [,] π ) ∖ dom 𝐹 ) ) ⊆ ℝ ) |
20 |
10 19
|
eqsstrid |
⊢ ( 𝜑 → 𝐻 ⊆ ℝ ) |
21 |
|
elfzofz |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → 𝐼 ∈ ( 0 ... 𝑀 ) ) |
22 |
6 21
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... 𝑀 ) ) |
23 |
5 22
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) ∈ 𝐻 ) |
24 |
20 23
|
sseldd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) ∈ ℝ ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( 𝑄 ‘ 𝐼 ) ∈ ℝ ) |
26 |
|
fzofzp1 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
27 |
6 26
|
syl |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
28 |
5 27
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ 𝐻 ) |
29 |
20 28
|
sseldd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ ) |
30 |
29
|
rexrd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
32 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( 𝑄 ‘ 𝐼 ) < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
33 |
|
simpr |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ∧ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → 𝑥 = ( 𝑄 ‘ 𝐼 ) ) |
34 |
|
simpl |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ∧ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) |
35 |
33 34
|
eqeltrd |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ∧ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → 𝑥 ∈ dom 𝐹 ) |
36 |
35
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) ∧ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → 𝑥 ∈ dom 𝐹 ) |
37 |
36
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → 𝑥 ∈ dom 𝐹 ) |
38 |
|
ssun2 |
⊢ ( ( - π [,] π ) ∖ dom 𝐹 ) ⊆ ( { - π , π , 𝐶 } ∪ ( ( - π [,] π ) ∖ dom 𝐹 ) ) |
39 |
38 10
|
sseqtrri |
⊢ ( ( - π [,] π ) ∖ dom 𝐹 ) ⊆ 𝐻 |
40 |
|
ioossicc |
⊢ ( - π (,) π ) ⊆ ( - π [,] π ) |
41 |
8 40
|
sstrdi |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
42 |
41
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ ( - π [,] π ) ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ( - π [,] π ) ) |
44 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → ¬ 𝑥 ∈ dom 𝐹 ) |
45 |
43 44
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ( ( - π [,] π ) ∖ dom 𝐹 ) ) |
46 |
39 45
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ 𝐻 ) |
47 |
11
|
eqcomd |
⊢ ( 𝜑 → 𝐻 = ran 𝑄 ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝐻 = ran 𝑄 ) |
49 |
46 48
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ran 𝑄 ) |
50 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ran 𝑄 ) |
51 |
|
ffn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 → 𝑄 Fn ( 0 ... 𝑀 ) ) |
52 |
5 51
|
syl |
⊢ ( 𝜑 → 𝑄 Fn ( 0 ... 𝑀 ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝑄 ) → 𝑄 Fn ( 0 ... 𝑀 ) ) |
54 |
|
fvelrnb |
⊢ ( 𝑄 Fn ( 0 ... 𝑀 ) → ( 𝑥 ∈ ran 𝑄 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 ) = 𝑥 ) ) |
55 |
53 54
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝑄 ) → ( 𝑥 ∈ ran 𝑄 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 ) = 𝑥 ) ) |
56 |
50 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝑄 ) → ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 ) = 𝑥 ) |
57 |
56
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ 𝑥 ∈ ran 𝑄 ) → ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 ) = 𝑥 ) |
58 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
59 |
58
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ 𝑥 ∈ ran 𝑄 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝑥 ) → 𝑗 ∈ ℤ ) |
60 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝑥 ) → 𝜑 ) |
61 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝑥 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
62 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝑥 ) → ( 𝑄 ‘ 𝑗 ) = 𝑥 ) |
63 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝑥 ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
64 |
62 63
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝑥 ) → ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
65 |
64
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝑥 ) → ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
66 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → 𝐼 ∈ ℤ ) |
67 |
6 66
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝐼 ∈ ℤ ) |
69 |
24
|
rexrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ) |
71 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
72 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
73 |
|
ioogtlb |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐼 ) < ( 𝑄 ‘ 𝑗 ) ) |
74 |
70 71 72 73
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐼 ) < ( 𝑄 ‘ 𝑗 ) ) |
75 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
76 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝐼 ∈ ( 0 ... 𝑀 ) ) |
77 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
78 |
|
isorel |
⊢ ( ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ∧ ( 𝐼 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ) → ( 𝐼 < 𝑗 ↔ ( 𝑄 ‘ 𝐼 ) < ( 𝑄 ‘ 𝑗 ) ) ) |
79 |
75 76 77 78
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝐼 < 𝑗 ↔ ( 𝑄 ‘ 𝐼 ) < ( 𝑄 ‘ 𝑗 ) ) ) |
80 |
74 79
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝐼 < 𝑗 ) |
81 |
|
iooltub |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
82 |
70 71 72 81
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
83 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
84 |
|
isorel |
⊢ ( ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ∧ ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) → ( 𝑗 < ( 𝐼 + 1 ) ↔ ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
85 |
75 77 83 84
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑗 < ( 𝐼 + 1 ) ↔ ( 𝑄 ‘ 𝑗 ) < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
86 |
82 85
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑗 < ( 𝐼 + 1 ) ) |
87 |
|
btwnnz |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐼 < 𝑗 ∧ 𝑗 < ( 𝐼 + 1 ) ) → ¬ 𝑗 ∈ ℤ ) |
88 |
68 80 86 87
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑗 ∈ ℤ ) |
89 |
60 61 65 88
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝑥 ) → ¬ 𝑗 ∈ ℤ ) |
90 |
89
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ 𝑥 ∈ ran 𝑄 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝑥 ) → ¬ 𝑗 ∈ ℤ ) |
91 |
59 90
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ 𝑥 ∈ ran 𝑄 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ¬ ( 𝑄 ‘ 𝑗 ) = 𝑥 ) |
92 |
91
|
nrexdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ 𝑥 ∈ ran 𝑄 ) → ¬ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 ) = 𝑥 ) |
93 |
57 92
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑥 ∈ ran 𝑄 ) |
94 |
93
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → ¬ 𝑥 ∈ ran 𝑄 ) |
95 |
49 94
|
condan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ dom 𝐹 ) |
96 |
95
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) 𝑥 ∈ dom 𝐹 ) |
97 |
|
dfss3 |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ dom 𝐹 ↔ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) 𝑥 ∈ dom 𝐹 ) |
98 |
96 97
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ dom 𝐹 ) |
99 |
98
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ dom 𝐹 ) |
100 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ) |
101 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
102 |
|
icossre |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) → ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ℝ ) |
103 |
24 30 102
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ℝ ) |
104 |
103
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
105 |
104
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → 𝑥 ∈ ℝ ) |
106 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → ( 𝑄 ‘ 𝐼 ) ∈ ℝ ) |
107 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ) |
108 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
109 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
110 |
|
icogelb |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐼 ) ≤ 𝑥 ) |
111 |
107 108 109 110
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐼 ) ≤ 𝑥 ) |
112 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → ( 𝑄 ‘ 𝐼 ) ≤ 𝑥 ) |
113 |
|
neqne |
⊢ ( ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) → 𝑥 ≠ ( 𝑄 ‘ 𝐼 ) ) |
114 |
113
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → 𝑥 ≠ ( 𝑄 ‘ 𝐼 ) ) |
115 |
106 105 112 114
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → ( 𝑄 ‘ 𝐼 ) < 𝑥 ) |
116 |
|
icoltub |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
117 |
107 108 109 116
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
118 |
117
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → 𝑥 < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
119 |
100 101 105 115 118
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
120 |
99 119
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → 𝑥 ∈ dom 𝐹 ) |
121 |
120
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ 𝐼 ) ) → 𝑥 ∈ dom 𝐹 ) |
122 |
37 121
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ dom 𝐹 ) |
123 |
122
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) 𝑥 ∈ dom 𝐹 ) |
124 |
|
dfss3 |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ dom 𝐹 ↔ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) 𝑥 ∈ dom 𝐹 ) |
125 |
123 124
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ dom 𝐹 ) |
126 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) ) |
127 |
|
rescncf |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ dom 𝐹 → ( 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) –cn→ ℂ ) ) ) |
128 |
125 126 127
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) –cn→ ℂ ) ) |
129 |
25 31 32 128
|
icocncflimc |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ‘ ( 𝑄 ‘ 𝐼 ) ) ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ) |
130 |
24
|
leidd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) ≤ ( 𝑄 ‘ 𝐼 ) ) |
131 |
69 30 69 130 7
|
elicod |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
132 |
|
fvres |
⊢ ( ( 𝑄 ‘ 𝐼 ) ∈ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ‘ ( 𝑄 ‘ 𝐼 ) ) = ( 𝐹 ‘ ( 𝑄 ‘ 𝐼 ) ) ) |
133 |
131 132
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ‘ ( 𝑄 ‘ 𝐼 ) ) = ( 𝐹 ‘ ( 𝑄 ‘ 𝐼 ) ) ) |
134 |
133
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑄 ‘ 𝐼 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ‘ ( 𝑄 ‘ 𝐼 ) ) ) |
135 |
134
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝑄 ‘ 𝐼 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ‘ ( 𝑄 ‘ 𝐼 ) ) ) |
136 |
|
ioossico |
⊢ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
137 |
136
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
138 |
137
|
resabs1d |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
139 |
138
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
140 |
139
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) = ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) [,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ) |
141 |
129 135 140
|
3eltr4d |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝑄 ‘ 𝐼 ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ) |
142 |
141
|
ne0d |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ≠ ∅ ) |
143 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
144 |
143
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
145 |
29
|
ltpnfd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) < +∞ ) |
146 |
30 144 145
|
xrltled |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≤ +∞ ) |
147 |
|
iooss2 |
⊢ ( ( +∞ ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≤ +∞ ) → ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) |
148 |
143 146 147
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) |
149 |
148
|
resabs1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
150 |
149
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ) |
151 |
150
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) = ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ) |
152 |
151
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) = ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ) |
153 |
|
limcresi |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ⊆ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) |
154 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( 𝑄 ‘ 𝐼 ) ∈ ℝ ) |
155 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → 𝜑 ) |
156 |
12
|
renegcli |
⊢ - π ∈ ℝ |
157 |
156
|
rexri |
⊢ - π ∈ ℝ* |
158 |
157
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ* ) |
159 |
12
|
rexri |
⊢ π ∈ ℝ* |
160 |
159
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ* ) |
161 |
14 13 24 29 7 8
|
fourierdlem10 |
⊢ ( 𝜑 → ( - π ≤ ( 𝑄 ‘ 𝐼 ) ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≤ π ) ) |
162 |
161
|
simpld |
⊢ ( 𝜑 → - π ≤ ( 𝑄 ‘ 𝐼 ) ) |
163 |
161
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≤ π ) |
164 |
24 29 13 7 163
|
ltletrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) < π ) |
165 |
158 160 69 162 164
|
elicod |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) ∈ ( - π [,) π ) ) |
166 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( 𝑄 ‘ 𝐼 ) ∈ ( - π [,) π ) ) |
167 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ¬ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) |
168 |
166 167
|
eldifd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( 𝑄 ‘ 𝐼 ) ∈ ( ( - π [,) π ) ∖ dom 𝐹 ) ) |
169 |
155 168
|
jca |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ ( ( - π [,) π ) ∖ dom 𝐹 ) ) ) |
170 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝐼 ) → ( 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐹 ) ↔ ( 𝑄 ‘ 𝐼 ) ∈ ( ( - π [,) π ) ∖ dom 𝐹 ) ) ) |
171 |
170
|
anbi2d |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝐼 ) → ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐹 ) ) ↔ ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ ( ( - π [,) π ) ∖ dom 𝐹 ) ) ) ) |
172 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝐼 ) → ( 𝑥 (,) +∞ ) = ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) |
173 |
172
|
reseq2d |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝐼 ) → ( 𝐹 ↾ ( 𝑥 (,) +∞ ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) ) |
174 |
|
id |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝐼 ) → 𝑥 = ( 𝑄 ‘ 𝐼 ) ) |
175 |
173 174
|
oveq12d |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝐼 ) → ( ( 𝐹 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ) |
176 |
175
|
neeq1d |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝐼 ) → ( ( ( 𝐹 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ↔ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ≠ ∅ ) ) |
177 |
171 176
|
imbi12d |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝐼 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) ↔ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ ( ( - π [,) π ) ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ≠ ∅ ) ) ) |
178 |
177 2
|
vtoclg |
⊢ ( ( 𝑄 ‘ 𝐼 ) ∈ ℝ → ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐼 ) ∈ ( ( - π [,) π ) ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ≠ ∅ ) ) |
179 |
154 169 178
|
sylc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ≠ ∅ ) |
180 |
|
ssn0 |
⊢ ( ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ⊆ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ≠ ∅ ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ≠ ∅ ) |
181 |
153 179 180
|
sylancr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) +∞ ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ≠ ∅ ) |
182 |
152 181
|
eqnetrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝐼 ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ≠ ∅ ) |
183 |
142 182
|
pm2.61dan |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ≠ ∅ ) |
184 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ) |
185 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ ) |
186 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝑄 ‘ 𝐼 ) < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
187 |
|
simpr |
⊢ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ∧ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
188 |
|
simpl |
⊢ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ∧ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) |
189 |
187 188
|
eqeltrd |
⊢ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ∧ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → 𝑥 ∈ dom 𝐹 ) |
190 |
189
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) ∧ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → 𝑥 ∈ dom 𝐹 ) |
191 |
190
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → 𝑥 ∈ dom 𝐹 ) |
192 |
98
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ dom 𝐹 ) |
193 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ) |
194 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
195 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ) |
196 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ ) |
197 |
|
iocssre |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ ) → ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ℝ ) |
198 |
195 196 197
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ℝ ) |
199 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
200 |
198 199
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
201 |
200
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → 𝑥 ∈ ℝ ) |
202 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
203 |
|
iocgtlb |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐼 ) < 𝑥 ) |
204 |
195 202 199 203
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐼 ) < 𝑥 ) |
205 |
204
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → ( 𝑄 ‘ 𝐼 ) < 𝑥 ) |
206 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ ) |
207 |
|
iocleub |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
208 |
195 202 199 207
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
209 |
208
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → 𝑥 ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
210 |
|
neqne |
⊢ ( ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) → 𝑥 ≠ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
211 |
210
|
necomd |
⊢ ( ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≠ 𝑥 ) |
212 |
211
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≠ 𝑥 ) |
213 |
201 206 209 212
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → 𝑥 < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
214 |
193 194 201 205 213
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
215 |
192 214
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → 𝑥 ∈ dom 𝐹 ) |
216 |
215
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∧ ¬ 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → 𝑥 ∈ dom 𝐹 ) |
217 |
191 216
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ dom 𝐹 ) |
218 |
217
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) 𝑥 ∈ dom 𝐹 ) |
219 |
|
dfss3 |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ dom 𝐹 ↔ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) 𝑥 ∈ dom 𝐹 ) |
220 |
218 219
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ dom 𝐹 ) |
221 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) ) |
222 |
|
rescncf |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ dom 𝐹 → ( 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) –cn→ ℂ ) ) ) |
223 |
220 221 222
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) –cn→ ℂ ) ) |
224 |
184 185 186 223
|
ioccncflimc |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
225 |
29
|
leidd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
226 |
69 30 30 7 225
|
eliocd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
227 |
|
fvres |
⊢ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
228 |
226 227
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
229 |
228
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
230 |
|
ioossioc |
⊢ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
231 |
|
resabs1 |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
232 |
230 231
|
ax-mp |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
233 |
232
|
eqcomi |
⊢ ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
234 |
233
|
oveq1i |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) = ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
235 |
234
|
a1i |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) = ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
236 |
229 235
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ↔ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
237 |
236
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( ( 𝐹 ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ↔ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
238 |
224 237
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
239 |
238
|
ne0d |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ≠ ∅ ) |
240 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
241 |
240
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
242 |
24
|
mnfltd |
⊢ ( 𝜑 → -∞ < ( 𝑄 ‘ 𝐼 ) ) |
243 |
241 69 242
|
xrltled |
⊢ ( 𝜑 → -∞ ≤ ( 𝑄 ‘ 𝐼 ) ) |
244 |
|
iooss1 |
⊢ ( ( -∞ ∈ ℝ* ∧ -∞ ≤ ( 𝑄 ‘ 𝐼 ) ) → ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
245 |
240 243 244
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
246 |
245
|
resabs1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
247 |
246
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) = ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
248 |
247
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) = ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
249 |
248
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) = ( ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
250 |
|
limcresi |
⊢ ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
251 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ ) |
252 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → 𝜑 ) |
253 |
157
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → - π ∈ ℝ* ) |
254 |
159
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → π ∈ ℝ* ) |
255 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
256 |
14 24 29 162 7
|
lelttrd |
⊢ ( 𝜑 → - π < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
257 |
256
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → - π < ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
258 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≤ π ) |
259 |
253 254 255 257 258
|
eliocd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( - π (,] π ) ) |
260 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) |
261 |
259 260
|
eldifd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( ( - π (,] π ) ∖ dom 𝐹 ) ) |
262 |
252 261
|
jca |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( ( - π (,] π ) ∖ dom 𝐹 ) ) ) |
263 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) → ( 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐹 ) ↔ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( ( - π (,] π ) ∖ dom 𝐹 ) ) ) |
264 |
263
|
anbi2d |
⊢ ( 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) → ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐹 ) ) ↔ ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( ( - π (,] π ) ∖ dom 𝐹 ) ) ) ) |
265 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) → ( -∞ (,) 𝑥 ) = ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
266 |
265
|
reseq2d |
⊢ ( 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) → ( 𝐹 ↾ ( -∞ (,) 𝑥 ) ) = ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ) |
267 |
|
id |
⊢ ( 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) → 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
268 |
266 267
|
oveq12d |
⊢ ( 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) → ( ( 𝐹 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) = ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
269 |
268
|
neeq1d |
⊢ ( 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) → ( ( ( 𝐹 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ↔ ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ≠ ∅ ) ) |
270 |
264 269
|
imbi12d |
⊢ ( 𝑥 = ( 𝑄 ‘ ( 𝐼 + 1 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) ↔ ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( ( - π (,] π ) ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ≠ ∅ ) ) ) |
271 |
270 3
|
vtoclg |
⊢ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ → ( ( 𝜑 ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ( ( - π (,] π ) ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ≠ ∅ ) ) |
272 |
251 262 271
|
sylc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ≠ ∅ ) |
273 |
|
ssn0 |
⊢ ( ( ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ∧ ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ≠ ∅ ) → ( ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ≠ ∅ ) |
274 |
250 272 273
|
sylancr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( ( ( 𝐹 ↾ ( -∞ (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ≠ ∅ ) |
275 |
249 274
|
eqnetrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ≠ ∅ ) |
276 |
239 275
|
pm2.61dan |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ≠ ∅ ) |
277 |
183 276
|
jca |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝐼 ) ) ≠ ∅ ∧ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝐼 ) (,) ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ≠ ∅ ) ) |